A299544 Solution b( ) of the complementary equation a(n) = 2*b(n-1) + b(n-2) - b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3; see Comments.
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 62, 63, 66, 68, 69, 70, 72, 73, 76, 77, 78, 80, 81, 84, 85, 86, 88, 89, 92, 93, 94, 96, 97, 100, 101
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; a[n_] := a[n] = 2 b[n - 1] + b[n - 2] - b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299543 *) Table[b[n], {n, 0, 100}] (* A299544 *)
Comments