A299545 Solution a( ) of the complementary equation a(n) = b(n-1) + 2*b(n-2) - b(n-3), where a(0) = 1, a(1) = 2, a(2) = 3; see Comments.
1, 2, 3, 12, 14, 16, 18, 20, 22, 25, 30, 34, 38, 42, 46, 49, 51, 55, 56, 58, 61, 65, 66, 69, 73, 74, 77, 81, 82, 85, 89, 90, 93, 97, 99, 104, 107, 108, 112, 119, 121, 123, 127, 128, 132, 138, 139, 143, 144, 148, 154, 155, 159, 160, 164, 170, 171, 175, 176
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; a[n_] := a[n] = b[n - 1] + 2 b[n - 2] - b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299545 *) Table[b[n], {n, 0, 100}] (* A299546 *)
Comments