A299547 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + ... + b(0), where a(0) = 1, a(1) = 2, a(2) = 3; see Comments.
1, 2, 3, 12, 18, 25, 33, 42, 52, 63, 76, 90, 105, 121, 138, 157, 177, 198, 220, 243, 267, 293, 320, 348, 377, 407, 438, 470, 504, 539, 575, 612, 650, 689, 729, 770, 813, 857, 902, 948, 995, 1043, 1092, 1142, 1193, 1246, 1300, 1355, 1411, 1468, 1526, 1585
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Crossrefs
Cf. A022424.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; a[n_] := a[n] = Sum[b[k], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299547 *)
Extensions
Definition corrected by Georg Fischer, Sep 28 2020
Comments