This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299613 #45 Nov 24 2024 08:25:02 %S A299613 1,1,3,4,2,8,6,5,8,0,8,1,9,5,6,7,7,4,5,9,9,9,9,3,7,3,2,4,4,2,0,7,1,1, %T A299613 0,9,9,5,0,7,6,3,1,5,7,4,3,7,3,0,2,5,0,1,6,2,7,0,2,6,2,1,5,8,4,4,6,0, %U A299613 9,1,5,8,6,1,7,3,3,6,9,1,3,3,3,8,6,4 %N A299613 Decimal expansion of 2*W(1), where W is the Lambert W function (or PowerLog); see Comments. %C A299613 The Lambert W function satisfies the functional equations %C A299613 W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)). %C A299613 Guide to related constants: %C A299613 -------------------------------------------- %C A299613 x y W(x) + W(y) e^(W(x) + W(y)) %C A299613 -------------------------------------------- %C A299613 1 1 A299613 A299614 %C A299613 1 2 A299615 A299616 %C A299613 1 e A030178 A299617 %C A299613 e e 2 exactly e^2 exactly %C A299613 1 1/e A299618 A299619 %C A299613 1 3 A299620 A299621 %C A299613 1 1/2 A299622 A299623 %C A299613 1/2 1/2 A126583 A099954 %C A299613 2 2 A299624 A299625 %C A299613 3 3 A299626 A299627 %C A299613 1/3 1/3 A299628 A299629 %C A299613 3/2 3/2 A299630 A299631 %C A299613 e/2 e/2 A299632 A299633 %H A299613 Clark Kimberling, <a href="/A299613/b299613.txt">Table of n, a(n) for n = 1..10000</a> %H A299613 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %H A299613 <a href="/index/La#LambertW">Index entries for sequences related to LambertW function</a>. %H A299613 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A299613 Equals 2*A030178. %e A299613 2*W(1) = 1.13428658081956774599993... %t A299613 w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100] %t A299613 RealDigits[u, 10][[1]] (* A299613 *) %t A299613 RealDigits[2 ProductLog[1], 10, 111][[1]] (* _Robert G. Wilson v_, Mar 02 2018 *) %o A299613 (PARI) 2*lambertw(1) \\ _G. C. Greubel_, Mar 07 2018 %Y A299613 Cf. A299614-A299633. %K A299613 nonn,cons,easy %O A299613 1,3 %A A299613 _Clark Kimberling_, Mar 01 2018