This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299614 #10 Feb 16 2025 08:33:53 %S A299614 3,1,0,8,9,5,4,7,6,3,5,7,9,9,3,6,1,8,5,4,8,0,9,4,5,4,0,5,4,2,4,5,6,9, %T A299614 3,0,7,8,5,0,1,5,8,1,2,1,5,7,4,0,8,0,7,7,1,5,5,1,0,9,7,0,4,4,2,6,5,0, %U A299614 1,6,1,5,4,9,3,5,9,0,1,3,3,8,7,9,6,5 %N A299614 Decimal expansion of e^(2*A030178) = e^(2*W(1)) = (1/W(1))^2, where W is the Lambert W function (or PowerLog); see Comments. %C A299614 The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(1)) = (W(1))^(-2). See A299613 for a guide to related constants. %H A299614 G. C. Greubel, <a href="/A299614/b299614.txt">Table of n, a(n) for n = 1..10000</a> %H A299614 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a> %e A299614 e^(2*W(1)) = 3.1089547635799361854809454054... %t A299614 w[x_] := ProductLog[x]; x = 1; y = 1; %t A299614 N[E^(w[x] + w[y]), 130] (* A299614 *) %t A299614 RealDigits[(1/LambertW[1])^2, 10, 100][[1]] (* _G. C. Greubel_, Mar 03 2018 *) %o A299614 (PARI) (1/lambertw(1))^2 \\ _G. C. Greubel_, Mar 03 2018 %Y A299614 Cf. A299613. %K A299614 nonn,cons,easy %O A299614 1,1 %A A299614 _Clark Kimberling_, Mar 01 2018