cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299616 Decimal expansion of e^(W(1) + W(2)) = 2/(W(1)*W(2)), where W is the Lambert W function (or PowerLog); see Comments.

This page as a plain text file.
%I A299616 #9 Feb 16 2025 08:33:53
%S A299616 4,1,3,6,0,8,1,2,9,4,7,7,8,0,1,9,9,4,3,4,2,5,8,6,5,2,2,5,7,6,0,9,1,2,
%T A299616 5,8,4,2,1,0,1,4,8,4,5,4,0,4,1,3,0,1,4,9,5,9,2,3,9,4,5,8,0,2,7,3,6,0,
%U A299616 4,4,9,9,9,0,6,9,6,4,1,8,0,5,4,2,7,4
%N A299616 Decimal expansion of e^(W(1) + W(2)) = 2/(W(1)*W(2)), where W is the Lambert W function (or PowerLog); see Comments.
%C A299616 The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(W(1) + W(2)) = 2/(W(1)*W(2)).  See A299613 for a guide to related constants.
%H A299616 G. C. Greubel, <a href="/A299616/b299616.txt">Table of n, a(n) for n = 1..10000</a>
%H A299616 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>
%e A299616 e^(W(1) + W(2)) = 4.13608129477801994342...
%t A299616 w[x_] := ProductLog[x]; x = 1; y = 2; N[E^(w[x] + w[y]), 130]   (* A299616 *)
%t A299616 RealDigits[2/(LambertW[1]*LambertW[2]), 10, 100][[1]] (* _G. C. Greubel_, Mar 03 2018 *)
%o A299616 (PARI) 2/(lambertw(1)*lambertw(2)) \\ _G. C. Greubel_, Mar 03 2018
%Y A299616 Cf. A299613, A299615.
%K A299616 nonn,cons,easy
%O A299616 1,1
%A A299616 _Clark Kimberling_, Mar 01 2018