cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299629 Decimal expansion of e^(2*W(1/3)) = (1/9)/(W(1/3))^2, where W is the Lambert W function (or PowerLog); see Comments.

This page as a plain text file.
%I A299629 #8 Feb 16 2025 08:33:53
%S A299629 1,6,7,4,0,6,5,8,4,6,4,6,4,8,8,0,7,7,2,2,2,6,0,8,1,1,1,4,3,8,9,3,4,0,
%T A299629 0,8,4,2,0,3,5,4,5,3,3,0,1,6,1,8,2,3,2,7,2,3,3,7,9,1,8,0,6,1,4,3,4,5,
%U A299629 8,5,5,2,5,5,5,1,9,6,8,1,3,2,8,1,6,2
%N A299629 Decimal expansion of e^(2*W(1/3)) = (1/9)/(W(1/3))^2, where W is the Lambert W function (or PowerLog); see Comments.
%C A299629 The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(1/3)) = (1/9)/(W(1/3))^2.  See A299613 for a guide to related constants.
%H A299629 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>
%e A299629 e^(2*W(1/3)) = 1.674065846464880772226081114...
%t A299629 w[x_] := ProductLog[x]; x = 1/3; y = 1/3; N[E^(w[x] + w[y]), 130]   (* A299629 *)
%o A299629 (PARI) exp(2*lambertw(1/3)) \\ _Altug Alkan_, Mar 13 2018
%Y A299629 Cf. A299613, A299628.
%K A299629 nonn,cons,easy
%O A299629 1,2
%A A299629 _Clark Kimberling_, Mar 13 2018