cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299630 Decimal expansion of 2*W(3/2), where W is the Lambert W function (or PowerLog); see Comments.

This page as a plain text file.
%I A299630 #11 Nov 24 2024 20:50:08
%S A299630 1,4,5,1,7,2,2,7,1,5,5,3,2,4,5,2,5,1,4,0,9,7,3,7,8,7,9,8,5,5,2,6,1,3,
%T A299630 7,5,9,4,1,2,3,2,5,6,9,9,0,0,8,5,7,3,9,6,7,0,3,1,4,8,0,5,0,8,5,7,2,5,
%U A299630 2,5,6,9,5,2,6,5,9,5,3,4,6,2,7,1,0,0
%N A299630 Decimal expansion of 2*W(3/2), where W is the Lambert W function (or PowerLog); see Comments.
%C A299630 The Lambert W function satisfies the functional equations
%C A299630 W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(3/2) = W(9/(2*W(3/2))) = 2*log(3/2) - 2*log(W(3/2)). See A299613 for a guide to related sequences.
%H A299630 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%e A299630 2*W(3/2) = 1.451722715532452514097378798552...
%t A299630 w[x_] := ProductLog[x]; x = 3/2; y = 3/2; u = N[w[x] + w[y], 100]
%t A299630 RealDigits[u, 10][[1]]  (* A299630 *)
%o A299630 (PARI) 2*lambertw(3/2) \\ _Altug Alkan_, Mar 13 2018
%Y A299630 Cf. A299613, A299631.
%K A299630 nonn,cons,easy
%O A299630 0,2
%A A299630 _Clark Kimberling_, Mar 13 2018