cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299631 Decimal expansion of e^(2*W(3/2)) = (9/4)/(W(3/2))^2, where W is the Lambert W function (or PowerLog); see Comments.

This page as a plain text file.
%I A299631 #8 Feb 16 2025 08:33:53
%S A299631 4,2,7,0,4,6,4,9,7,8,3,2,1,3,8,3,7,0,5,0,7,5,4,4,4,9,4,9,0,5,7,8,0,6,
%T A299631 6,1,0,7,3,1,0,7,9,9,8,4,3,4,8,3,6,9,2,2,6,3,7,5,5,0,7,1,2,1,3,8,1,4,
%U A299631 1,7,9,9,8,9,8,3,5,7,6,1,4,2,2,7,7,7
%N A299631 Decimal expansion of e^(2*W(3/2)) = (9/4)/(W(3/2))^2, where W is the Lambert W function (or PowerLog); see Comments.
%C A299631 The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3/2)) = (9/4)/(W(3/2))^2.  See A299613 for a guide to related constants.
%H A299631 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>
%e A299631 e^(2*W(3/2)) = 4.2704649783213837050754449...
%t A299631 w[x_] := ProductLog[x]; x = 3/2; y = 3/2;
%t A299631 N[E^(w[x] + w[y]), 130]   (* A299631 *)
%o A299631 (PARI) exp(2*lambertw(3/2)) \\ _Altug Alkan_, Mar 13 2018
%Y A299631 Cf. A299613, A299630.
%K A299631 nonn,cons,easy
%O A299631 1,1
%A A299631 _Clark Kimberling_, Mar 13 2018