A299633 Decimal expansion of e^(2*W(e/2)) = (e^2/4)/(W(e/2))^2, where W is the Lambert W function (or PowerLog); see Comments.
3, 9, 3, 5, 9, 5, 6, 3, 3, 0, 7, 9, 1, 3, 4, 8, 8, 1, 0, 0, 2, 1, 1, 9, 8, 8, 4, 8, 9, 7, 7, 7, 0, 0, 7, 1, 8, 2, 9, 0, 2, 6, 6, 4, 3, 5, 6, 9, 6, 1, 5, 7, 6, 1, 0, 7, 4, 6, 1, 1, 8, 7, 0, 6, 0, 4, 2, 6, 8, 2, 2, 7, 3, 4, 2, 1, 5, 2, 7, 8, 0, 7, 1, 4, 3, 4
Offset: 1
Examples
e^(2*W(e/2)) = 3.9359563307913488100211988489777007...
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function
Programs
-
Mathematica
w[x_] := ProductLog[x]; x = e/2; y = e/2; N[E^(w[x] + w[y]), 130] (* A299633 *)
-
PARI
exp(2*lambertw(exp(1)/2)) \\ Altug Alkan, Mar 13 2018
Comments