This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299634 #8 May 05 2018 04:18:19 %S A299634 1,4,10,12,14,17,23,26,30,37,40,42,49,50,54,58,62,64,67,68,70,76,78, %T A299634 86,88,90,92,95,102,104,106,110,112,118,120,126,131,138,142,144,147, %U A299634 150,158,160,162,164,168,170,174,182,186,192,196,198,201,210,215,218 %N A299634 Solution (a(n)) of the system of 3 complementary equations in Comments. %C A299634 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A299634 a(n) = least new k >= 2*b(n-1); %C A299634 b(n) = least new k; %C A299634 c(n) = a(n) + b(n); %C A299634 where "least new k" means the least positive integer not yet placed. %C A299634 *** %C A299634 The sequences a,b,c partition the positive integers. %C A299634 *** %C A299634 Let x = 11/6. Conjectures: %C A299634 a(n) - 2*n*x = 0 for infinitely many n; %C A299634 b(n) - n*x = 0 for infinitely many n; %C A299634 c(n) - 3*n*x = 0 for infinitely many n; %C A299634 (a(n) - 2*n*x) is unbounded below and above; %C A299634 (b(n) - n*x) is unbounded below and above; %C A299634 (c(n) - 3*n*x) is unbounded below and above; %C A299634 *** %C A299634 Let d(a), d(b), d(c) denote the respective difference sequences. Conjectures: %C A299634 12 occurs infinitely many times in d(a); 6 occurs infinitely many times in d(b); %C A299634 2 occurs infinitely many times in d(c). %H A299634 Clark Kimberling, <a href="/A299634/b299634.txt">Table of n, a(n) for n = 0..1000</a> %e A299634 n: 0 1 2 3 4 5 6 7 8 9 %e A299634 a: 1 4 10 12 14 17 23 26 30 37 %e A299634 b: 2 5 6 7 8 11 13 15 18 20 %e A299634 c: 3 9 16 19 22 28 36 41 48 57 %t A299634 z = 1000; %t A299634 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299634 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; %t A299634 Do[{ %t A299634 AppendTo[a, mex[Flatten[{a, b, c}], 2 Last[b]]], %t A299634 AppendTo[b, mex[Flatten[{a, b, c}], 1]], %t A299634 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A299634 Take[a, 100] (* A299634 *) %t A299634 Take[b, 100] (* A299635 *) %t A299634 Take[c, 100] (* A299636 *) %t A299634 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A299634 Cf. A299635, A299636. %K A299634 nonn,easy %O A299634 0,2 %A A299634 _Clark Kimberling_, Apr 17 2018