This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299635 #8 May 05 2018 04:18:23 %S A299635 2,5,6,7,8,11,13,15,18,20,21,24,25,27,29,31,32,33,34,35,38,39,43,44, %T A299635 45,46,47,51,52,53,55,56,59,60,63,65,69,71,72,73,75,79,80,81,82,84,85, %U A299635 87,91,93,96,98,99,100,105,107,109,111,113,114,116,117,119 %N A299635 Solution (b(n)) of the system of 3 complementary equations in Comments. %C A299635 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A299635 a(n) = least new k >= 2*b(n-1); %C A299635 b(n) = least new k; %C A299635 c(n) = a(n) + b(n); %C A299635 where "least new k" means the least positive integer not yet placed. %C A299635 *** %C A299635 The sequences a,b,c partition the positive integers. %C A299635 *** %C A299635 Let x = 11/6. Conjectures: %C A299635 a(n) - 2*n*x = 0 for infinitely many n; %C A299635 b(n) - n*x = 0 for infinitely many n; %C A299635 c(n) - 3*n*x = 0 for infinitely many n; %C A299635 (a(n) - 2*n*x) is unbounded below and above; %C A299635 (b(n) - n*x) is unbounded below and above; %C A299635 (c(n) - 3*n*x) is unbounded below and above; %C A299635 *** %C A299635 Let d(a), d(b), d(c) denote the respective difference sequences. Conjectures: %C A299635 12 occurs infinitely many times in d(a); 6 occurs infinitely many times in d(b); %C A299635 2 occurs infinitely many times in d(c). %H A299635 Clark Kimberling, <a href="/A299635/b299635.txt">Table of n, a(n) for n = 0..1000</a> %e A299635 n: 0 1 2 3 4 5 6 7 8 9 %e A299635 a: 1 4 10 12 14 17 23 26 30 37 %e A299635 b: 2 5 6 7 8 11 13 15 18 20 %e A299635 c: 3 9 16 19 22 28 36 41 48 57 %t A299635 z = 1000; %t A299635 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299635 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; %t A299635 Do[{ %t A299635 AppendTo[a, mex[Flatten[{a, b, c}], 2 Last[b]]], %t A299635 AppendTo[b, mex[Flatten[{a, b, c}], 1]], %t A299635 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A299635 Take[a, 100] (* A299634 *) %t A299635 Take[b, 100] (* A299635 *) %t A299635 Take[c, 100] (* A299636 *) %t A299635 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A299635 Cf. A299634, A299636. %K A299635 nonn,easy %O A299635 0,1 %A A299635 _Clark Kimberling_, Apr 17 2018