This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299636 #8 May 05 2018 04:18:27 %S A299636 3,9,16,19,22,28,36,41,48,57,61,66,74,77,83,89,94,97,101,103,108,115, %T A299636 121,130,133,136,139,146,154,157,161,166,171,178,183,191,200,209,214, %U A299636 217,222,229,238,241,244,248,253,257,265,275,282,290,295,298,306,317 %N A299636 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A299636 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A299636 a(n) = least new k >= 2*b(n-1); %C A299636 b(n) = least new k; %C A299636 c(n) = a(n) + b(n); %C A299636 where "least new k" means the least positive integer not yet placed. %C A299636 *** %C A299636 The sequences a,b,c partition the positive integers. %C A299636 *** %C A299636 Let x = 11/6. Conjectures: %C A299636 a(n) - 2*n*x = 0 for infinitely many n; %C A299636 b(n) - n*x = 0 for infinitely many n; %C A299636 c(n) - 3*n*x = 0 for infinitely many n; %C A299636 (a(n) - 2*n*x) is unbounded below and above; %C A299636 (b(n) - n*x) is unbounded below and above; %C A299636 (c(n) - 3*n*x) is unbounded below and above; %C A299636 *** %C A299636 Let d(a), d(b), d(c) denote the respective difference sequences. Conjectures: %C A299636 12 occurs infinitely many times in d(a); 6 occurs infinitely many times in d(b); %C A299636 2 occurs infinitely many times in d(c). %H A299636 Clark Kimberling, <a href="/A299636/b299636.txt">Table of n, a(n) for n = 0..1000</a> %e A299636 n: 0 1 2 3 4 5 6 7 8 9 %e A299636 a: 1 4 10 12 14 17 23 26 30 37 %e A299636 b: 2 5 6 7 8 11 13 15 18 20 %e A299636 c: 3 9 16 19 22 28 36 41 48 57 %t A299636 z = 1000; %t A299636 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299636 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; %t A299636 Do[{ %t A299636 AppendTo[a, mex[Flatten[{a, b, c}], 2 Last[b]]], %t A299636 AppendTo[b, mex[Flatten[{a, b, c}], 1]], %t A299636 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A299636 Take[a, 100] (* A299634 *) %t A299636 Take[b, 100] (* A299635 *) %t A299636 Take[c, 100] (* A299636 *) %t A299636 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A299636 Cf. A299634, A299635. %K A299636 nonn,easy %O A299636 0,1 %A A299636 _Clark Kimberling_, Apr 17 2018