This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299638 #10 May 01 2018 03:00:31 %S A299638 3,7,12,16,20,24,29,33,37,41,46,50,54,58,63,67,71,75,80,84,88,92,97, %T A299638 101,105,109,113,118,122,126,131,135,139,143,148,152,156,160,165,169, %U A299638 173,177,182,186,190,194,199,203,207,211,216,220,224,228,233,237,241 %N A299638 Solution (c(n)) of the system of 5 complementary equations in Comments. %C A299638 Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3: %C A299638 a(n) = least new; %C A299638 b(n) = least new; %C A299638 c(n) = least new; %C A299638 d(n) = least new; %C A299638 e(n) = a(n) + b(n) + c(n) + d(n); %C A299638 where "least new k" means the least positive integer not yet placed. %C A299638 *** %C A299638 Conjecture: for all n >= 0, %C A299638 0 <= 17n - 11 - 4 a(n) <= 4 %C A299638 0 <= 17n - 7 - 4 b(n) <= 4 %C A299638 0 <= 17n - 3 - 4 c(n) <= 3 %C A299638 0 <= 17n + 1 - 4 d(n) <= 3 %C A299638 0 <= 17n - 5 - e(n) <= 3 %C A299638 *** %C A299638 The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers). %H A299638 Clark Kimberling, <a href="/A299638/b299638.txt">Table of n, a(n) for n = 0..1000</a> %e A299638 n: 0 1 2 3 4 5 6 7 8 9 %e A299638 a: 1 5 9 14 18 22 27 31 35 39 %e A299638 b: 2 6 11 15 19 23 28 32 36 40 %e A299638 c: 3 7 12 16 20 24 29 33 37 41 %e A299638 d: 4 8 13 17 21 25 30 34 38 42 %e A299638 e: 10 26 45 62 78 94 114 130 146 162 %t A299638 z = 200; %t A299638 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A299638 a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e, %t A299638 Last[a] + Last[b] + Last[c] + Last[d]]; %t A299638 Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]], %t A299638 AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]], %t A299638 AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]], %t A299638 AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]], %t A299638 AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}]; %t A299638 Take[a, 100] (* A299405 *) %t A299638 Take[b, 100] (* A299637 *) %t A299638 Take[c, 100] (* A299638 *) %t A299638 Take[d, 100] (* A299641 *) %t A299638 Take[e, 100] (* A299409 *) %Y A299638 Cf. A036554, A299634, A299405, A299637, A299641, A299409. %K A299638 nonn,easy %O A299638 0,1 %A A299638 _Clark Kimberling_, Apr 22 2018