A299649 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
4, 32, 247, 1924, 14981, 116654, 908360, 7073213, 55077652, 428878329, 3339587196, 26004677512, 202493066595, 1576771794248, 12277997133149, 95606234301950, 744466050795960, 5797003771085993, 45140074132400664, 351496458022297409
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..1..0 ..0..0..1. .0..1..1. .0..1..0. .1..0..0. .0..1..0. .0..1..1. .1..0..0 ..0..0..1. .1..1..1. .1..1..1. .0..1..0. .0..1..1. .0..0..0. .1..1..0 ..1..0..1. .0..1..0. .1..1..0. .1..0..0. .0..1..1. .1..0..1. .0..1..0 ..1..1..0. .1..1..0. .0..0..1. .0..0..0. .1..0..1. .0..0..1. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299654.
Formula
Empirical: a(n) = 7*a(n-1) +5*a(n-2) +9*a(n-3) -a(n-4) -6*a(n-5)
Comments