A299650 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
8, 128, 1924, 29408, 448993, 6856789, 104711327, 1599074414, 24419877459, 372922269561, 5694992480926, 86969703985622, 1328136856258967, 20282321638150114, 309736582562177245, 4730067508487376056
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1 ..0..0..0..0. .0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0 ..0..1..1..1. .0..1..1..0. .0..1..1..1. .1..0..1..0. .1..0..1..0 ..1..1..0..0. .0..1..0..0. .1..1..1..1. .0..1..1..0. .0..1..0..0 ..0..1..1..0. .0..1..0..0. .1..0..0..1. .0..1..1..1. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299654.
Formula
Empirical: a(n) = 13*a(n-1) +31*a(n-2) +61*a(n-3) -43*a(n-4) -428*a(n-5) -273*a(n-6) +69*a(n-7) +545*a(n-8) +212*a(n-9) -84*a(n-10) -204*a(n-11) -32*a(n-12) +16*a(n-13) +24*a(n-14)
Comments