A299651 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
16, 512, 14981, 448993, 13431706, 401989538, 12030404350, 360039414559, 10775053220325, 322469677661562, 9650689326119101, 288820348973371780, 8643651362044420950, 258682288630479728048, 7741696610337244038767
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..0..1. .0..0..0..1..1. .0..0..0..1..1. .0..0..1..0..0 ..1..0..1..0..1. .0..1..1..0..1. .1..1..0..0..0. .0..0..1..1..1 ..1..0..0..0..1. .1..1..1..0..0. .1..0..1..0..0. .0..0..0..0..1 ..0..0..1..0..0. .1..0..0..0..0. .1..0..1..1..1. .0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299654.
Formula
Empirical: a(n) = 25*a(n-1) +125*a(n-2) +679*a(n-3) +248*a(n-4) -12105*a(n-5) -34335*a(n-6) -131485*a(n-7) +98396*a(n-8) +444773*a(n-9) +1528691*a(n-10) +120695*a(n-11) -1628382*a(n-12) -7147705*a(n-13) -5406767*a(n-14) -1469117*a(n-15) +21686910*a(n-16) +26174174*a(n-17) +12379712*a(n-18) -42253252*a(n-19) -49440333*a(n-20) -12271694*a(n-21) +46804842*a(n-22) +37422506*a(n-23) -492636*a(n-24) -22290578*a(n-25) -11763494*a(n-26) +2197936*a(n-27) +4276248*a(n-28) +1359552*a(n-29) -435456*a(n-30) -235008*a(n-31)
Comments