cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A299649 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 247, 1924, 14981, 116654, 908360, 7073213, 55077652, 428878329, 3339587196, 26004677512, 202493066595, 1576771794248, 12277997133149, 95606234301950, 744466050795960, 5797003771085993, 45140074132400664, 351496458022297409
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 3 of A299654.

Examples

			Some solutions for n=5
..0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..1..0
..0..0..1. .0..1..1. .0..1..0. .1..0..0. .0..1..0. .0..1..1. .1..0..0
..0..0..1. .1..1..1. .1..1..1. .0..1..0. .0..1..1. .0..0..0. .1..1..0
..1..0..1. .0..1..0. .1..1..0. .1..0..0. .0..1..1. .1..0..1. .0..1..0
..1..1..0. .1..1..0. .0..0..1. .0..0..0. .1..0..1. .0..0..1. .1..0..1
		

Crossrefs

Cf. A299654.

Formula

Empirical: a(n) = 7*a(n-1) +5*a(n-2) +9*a(n-3) -a(n-4) -6*a(n-5)

A299650 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1924, 29408, 448993, 6856789, 104711327, 1599074414, 24419877459, 372922269561, 5694992480926, 86969703985622, 1328136856258967, 20282321638150114, 309736582562177245, 4730067508487376056
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 4 of A299654.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1
..0..0..0..0. .0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0
..0..1..1..1. .0..1..1..0. .0..1..1..1. .1..0..1..0. .1..0..1..0
..1..1..0..0. .0..1..0..0. .1..1..1..1. .0..1..1..0. .0..1..0..0
..0..1..1..0. .0..1..0..0. .1..0..0..1. .0..1..1..1. .1..1..1..1
		

Crossrefs

Cf. A299654.

Formula

Empirical: a(n) = 13*a(n-1) +31*a(n-2) +61*a(n-3) -43*a(n-4) -428*a(n-5) -273*a(n-6) +69*a(n-7) +545*a(n-8) +212*a(n-9) -84*a(n-10) -204*a(n-11) -32*a(n-12) +16*a(n-13) +24*a(n-14)

A299651 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 14981, 448993, 13431706, 401989538, 12030404350, 360039414559, 10775053220325, 322469677661562, 9650689326119101, 288820348973371780, 8643651362044420950, 258682288630479728048, 7741696610337244038767
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 5 of A299654.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..0..1..1. .0..0..0..1..1. .0..0..1..0..0
..1..0..1..0..1. .0..1..1..0..1. .1..1..0..0..0. .0..0..1..1..1
..1..0..0..0..1. .1..1..1..0..0. .1..0..1..0..0. .0..0..0..0..1
..0..0..1..0..0. .1..0..0..0..0. .1..0..1..1..1. .0..1..1..1..1
		

Crossrefs

Cf. A299654.

Formula

Empirical: a(n) = 25*a(n-1) +125*a(n-2) +679*a(n-3) +248*a(n-4) -12105*a(n-5) -34335*a(n-6) -131485*a(n-7) +98396*a(n-8) +444773*a(n-9) +1528691*a(n-10) +120695*a(n-11) -1628382*a(n-12) -7147705*a(n-13) -5406767*a(n-14) -1469117*a(n-15) +21686910*a(n-16) +26174174*a(n-17) +12379712*a(n-18) -42253252*a(n-19) -49440333*a(n-20) -12271694*a(n-21) +46804842*a(n-22) +37422506*a(n-23) -492636*a(n-24) -22290578*a(n-25) -11763494*a(n-26) +2197936*a(n-27) +4276248*a(n-28) +1359552*a(n-29) -435456*a(n-30) -235008*a(n-31)

A299652 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 116654, 6856789, 401989538, 23582064542, 1383316377321, 81146123707386, 4760069868306954, 279228031443069248, 16379652618721023225, 960838424607723816457, 56363251335370746218101, 3306295856088555646566574
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 6 of A299654.

Examples

			Some solutions for n=5
..0..0..0..1..0..0. .0..0..1..0..1..0. .0..0..0..1..0..1. .0..0..0..1..0..1
..0..0..1..0..1..0. .0..0..1..0..0..1. .0..0..1..0..1..1. .0..0..1..0..1..1
..0..0..1..1..0..0. .0..0..1..0..1..0. .0..0..1..0..0..1. .0..0..1..0..0..0
..0..0..1..1..1..1. .0..0..0..1..1..0. .0..0..0..1..0..1. .0..0..0..0..1..1
..0..0..0..0..0..1. .0..0..1..0..1..0. .0..0..1..1..1..0. .0..0..1..1..0..0
		

Crossrefs

Cf. A299654.

Formula

Empirical recurrence of order 89 (see link above)

A299653 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 908360, 104711327, 12030404350, 1383316377321, 159047224409362, 18286872879292507, 2102576561069853097, 241748833344365308506, 27795656314762148558055, 3195872788678032297914781
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 7 of A299654.

Examples

			Some solutions for n=5
..0..0..0..0..1..1..0. .0..0..0..0..0..0..0. .0..0..0..0..1..1..0
..0..0..1..0..1..1..1. .0..0..1..0..1..0..1. .0..0..1..0..1..0..1
..0..0..1..1..0..0..1. .0..0..1..0..1..0..1. .0..0..1..1..1..1..1
..0..0..0..0..1..1..0. .0..0..0..0..1..0..0. .0..0..0..0..0..0..1
..0..0..1..0..1..1..0. .0..0..1..1..0..0..0. .0..0..1..0..0..0..1
		

Crossrefs

Cf. A299654.

A299648 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 247, 29408, 13431706, 23582064542, 159047224409362, 4121184916626976747, 410254820466598294243538, 156900221075811012583120150328, 230531929217067955283511588326278811
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Diagonal of A299654.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..0..1..0. .0..0..1..0..1. .0..0..1..1..0
..1..0..0..1..0. .0..1..1..0..0. .1..0..1..1..0. .0..0..1..0..0
..1..0..0..1..0. .0..1..1..0..1. .0..0..1..0..1. .1..1..0..0..0
..0..0..1..1..0. .1..0..0..0..1. .1..0..0..1..1. .0..0..1..1..0
		

Crossrefs

Cf. A299654.
Showing 1-6 of 6 results.