A299656 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
4, 32, 227, 1642, 11888, 86123, 624007, 4521433, 32761769, 237388544, 1720095182, 12463651182, 90310472508, 654381403622, 4741587670337, 34357109680119, 248948467884508, 1803857782078629, 13070588164990173, 94708283921766839
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1. .0..1..0. .0..1..0. .0..0..0. .0..0..1. .0..1..1. .0..1..1 ..0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..1. .0..0..1. .1..0..1 ..1..1..0. .0..0..0. .1..0..0. .1..0..1. .0..1..1. .0..1..1. .0..1..1 ..0..0..1. .0..0..1. .0..1..1. .0..0..1. .0..0..1. .1..1..1. .1..0..0 ..0..0..1. .0..0..0. .0..0..1. .0..1..1. .1..0..0. .1..1..1. .0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299661.
Formula
Empirical: a(n) = 7*a(n-1) +3*a(n-2) -6*a(n-3) -18*a(n-4) -15*a(n-5) -17*a(n-6) -32*a(n-7) -12*a(n-8)
Comments