A299657 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
8, 128, 1642, 22087, 297071, 4001253, 53909088, 726363190, 9787119222, 131873695060, 1776895917925, 23942305066780, 322604164546039, 4346843339949429, 58570375761901837, 789190834365996749
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..1..0. .0..0..0..0 ..0..0..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..1. .1..0..1..1 ..0..0..1..1. .1..1..0..1. .1..1..0..1. .1..0..1..0. .0..1..0..1 ..1..0..1..0. .0..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..1..1 ..1..1..0..1. .0..1..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299661.
Formula
Empirical: a(n) = 13*a(n-1) +12*a(n-2) -39*a(n-3) -468*a(n-4) -404*a(n-5) +675*a(n-6) +2723*a(n-7) +3026*a(n-8) +5750*a(n-9) +19747*a(n-10) +17630*a(n-11) -28280*a(n-12) -73625*a(n-13) -44638*a(n-14) +24870*a(n-15) +47548*a(n-16) +29679*a(n-17) +4247*a(n-18) -10854*a(n-19) -4557*a(n-20) -2325*a(n-21) -2645*a(n-22) -403*a(n-23) +60*a(n-24)
Comments