cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A299656 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 227, 1642, 11888, 86123, 624007, 4521433, 32761769, 237388544, 1720095182, 12463651182, 90310472508, 654381403622, 4741587670337, 34357109680119, 248948467884508, 1803857782078629, 13070588164990173, 94708283921766839
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 3 of A299661.

Examples

			Some solutions for n=5
..0..0..1. .0..1..0. .0..1..0. .0..0..0. .0..0..1. .0..1..1. .0..1..1
..0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..1. .0..0..1. .1..0..1
..1..1..0. .0..0..0. .1..0..0. .1..0..1. .0..1..1. .0..1..1. .0..1..1
..0..0..1. .0..0..1. .0..1..1. .0..0..1. .0..0..1. .1..1..1. .1..0..0
..0..0..1. .0..0..0. .0..0..1. .0..1..1. .1..0..0. .1..1..1. .0..1..1
		

Crossrefs

Cf. A299661.

Formula

Empirical: a(n) = 7*a(n-1) +3*a(n-2) -6*a(n-3) -18*a(n-4) -15*a(n-5) -17*a(n-6) -32*a(n-7) -12*a(n-8)

A299657 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1642, 22087, 297071, 4001253, 53909088, 726363190, 9787119222, 131873695060, 1776895917925, 23942305066780, 322604164546039, 4346843339949429, 58570375761901837, 789190834365996749
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 4 of A299661.

Examples

			Some solutions for n=5
..0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..1..0. .0..0..0..0
..0..0..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..1. .1..0..1..1
..0..0..1..1. .1..1..0..1. .1..1..0..1. .1..0..1..0. .0..1..0..1
..1..0..1..0. .0..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..1..1
..1..1..0..1. .0..1..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..0
		

Crossrefs

Cf. A299661.

Formula

Empirical: a(n) = 13*a(n-1) +12*a(n-2) -39*a(n-3) -468*a(n-4) -404*a(n-5) +675*a(n-6) +2723*a(n-7) +3026*a(n-8) +5750*a(n-9) +19747*a(n-10) +17630*a(n-11) -28280*a(n-12) -73625*a(n-13) -44638*a(n-14) +24870*a(n-15) +47548*a(n-16) +29679*a(n-17) +4247*a(n-18) -10854*a(n-19) -4557*a(n-20) -2325*a(n-21) -2645*a(n-22) -403*a(n-23) +60*a(n-24)

A299658 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11888, 297071, 7411398, 185302633, 4634931975, 115940148451, 2900256951630, 72550765755149, 1814880621999624, 45399839444130818, 1135692126141775248, 28409717970065456461, 710678591596437046213
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 5 of A299661.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..1..0..1
..0..0..0..0..1. .1..0..1..1..1. .1..1..1..0..0. .1..0..1..0..0
..0..1..1..0..0. .0..0..1..0..1. .0..0..0..1..1. .1..0..0..1..0
..1..0..1..1..0. .0..0..1..0..0. .1..0..0..0..0. .0..1..1..0..1
		

Crossrefs

Cf. A299661.

Formula

Empirical recurrence of order 89 (see link above)

A299659 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 86123, 4001253, 185302633, 8607101770, 400012077773, 18591844096646, 864147943636240, 40165914492008178, 1866929265130170249, 86775739876609282395, 4033377275756444263520, 187473281454195133866240
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 6 of A299661.

Examples

			Some solutions for n=5
..0..0..0..1..1..0. .0..1..1..1..0..1. .0..0..0..1..0..1. .0..0..1..0..1..0
..0..1..0..1..0..1. .0..0..1..0..0..1. .0..1..0..1..1..0. .0..1..0..0..1..0
..0..0..0..1..0..0. .0..0..0..1..0..1. .0..0..0..1..0..0. .0..0..0..1..0..1
..0..0..0..1..0..0. .0..0..0..1..1..0. .0..0..0..1..0..1. .0..0..0..1..0..1
..0..0..1..1..1..0. .0..1..0..0..1..1. .0..0..1..0..0..1. .0..0..1..1..0..1
		

Crossrefs

Cf. A299661.

A299660 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 624007, 53909088, 4634931975, 400012077773, 34546300829517, 2983786339120760, 257723568617382229, 22261041202423804183, 1922815213079467303536, 166084822425643801285901
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Column 7 of A299661.

Examples

			Some solutions for n=5
..0..0..0..0..1..0..1. .0..0..0..0..1..1..1. .0..0..0..1..1..0..1
..0..0..1..1..1..0..0. .0..0..1..0..1..0..1. .0..0..1..1..0..1..0
..0..0..0..1..0..1..0. .0..0..0..0..1..0..0. .0..0..0..1..1..1..0
..0..0..0..0..1..0..1. .0..0..0..0..1..1..0. .0..0..0..0..0..1..1
..0..0..1..1..1..0..1. .0..0..1..0..0..1..1. .0..0..1..1..0..0..1
		

Crossrefs

Cf. A299661.

A299655 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 227, 22087, 7411398, 8607101770, 34546300829517, 478911551660693464, 22930235691929943217996
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2018

Keywords

Comments

Diagonal of A299661.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..1..0. .0..1..0..0..1. .0..0..0..0..0. .0..0..1..1..1
..1..0..1..1..1. .0..1..1..1..1. .0..0..1..0..0. .1..1..1..1..0
..0..0..0..1..1. .0..0..0..1..0. .1..1..1..0..1. .0..0..0..0..1
..1..0..0..0..0. .1..0..1..0..1. .0..1..0..0..1. .0..1..0..0..0
		

Crossrefs

Cf. A299661.
Showing 1-6 of 6 results.