cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299692 a(n) is the total area that is visible in the perspective view of the stepped pyramid with n levels described in A245092.

This page as a plain text file.
%I A299692 #56 Mar 21 2024 08:35:31
%S A299692 3,10,20,35,51,75,97,128,159,197,231,283,323,375,429,492,544,619,677,
%T A299692 759,833,913,983,1091,1172,1266,1360,1472,1560,1692,1786,1913,2027,
%U A299692 2149,2267,2430,2542,2678,2812,2982,3106,3286,3416,3588,3756,3920,4062,4282,4437,4630,4804,5006,5166,5394,5576,5808,6002
%N A299692 a(n) is the total area that is visible in the perspective view of the stepped pyramid with n levels described in A245092.
%C A299692 a(n) is also the sum of all divisors of all positive integers <= n, plus the n-th oblong number, since A024916(n) equals the total area of the horizontal terraces of the stepped pyramid with n levels, and A002378(n) equals the total area of the vertical sides that are visible (see link).
%C A299692 a(n) is also the sum of all aliquot divisors of all positive integers <= n, plus the n-th triangular matchstick number.
%H A299692 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the pyramid with 16 levels</a>, contains 492 cells.
%F A299692 a(n) = A024916(n) + A002378(n).
%F A299692 a(n) = A153485(n) + A045943(n).
%F A299692 a(n) = A328366(n)/2. - _Omar E. Pol_, Apr 22 2020
%F A299692 a(n) = c * n^2 + O(n*log(n)), where c = zeta(2)/2 + 1 = A072691 + 1 = 1.822467... . - _Amiram Eldar_, Mar 21 2024
%e A299692 For n = 3 the areas of the terraces of the first three levels starting from the top of the stepped pyramid are 1, 3 and 4 respectively. On the other hand the areas of the vertical sides that are visible are [1, 1], [2, 2], [2, 1, 1, 2], or in successive levels 2, 4, 6 respectively. Hence the total area that is visible is equal to 1 + 3 + 4 + 2 + 4 + 6 = 8 + 12 = 20, so a(3) = 20.
%e A299692 For n = 16 the total number of horizontal and vertical cells that are visible are 220 and 272 respectively. So a(16) = 220 + 272 = 492 (see the link).
%t A299692 Accumulate[Table[DivisorSigma[1, n] + 2*n, {n, 1, 50}]] (* _Amiram Eldar_, Mar 21 2024 *)
%o A299692 (PARI) a(n) = sum(k=1, n, n\k*k) + n*(n+1); \\ _Michel Marcus_, Jun 21 2018
%o A299692 (Python)
%o A299692 from math import isqrt
%o A299692 def A299692(n): return n*(n+1)+(-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # _Chai Wah Wu_, Oct 22 2023
%Y A299692 Partial sums of A224880.
%Y A299692 Cf. A002378, A024916, A045943, A072691, A153485, A196020, A236104, A237048, A237270, A237271, A237591, A237593, A244050, A245092, A262626, A328366.
%K A299692 nonn
%O A299692 1,1
%A A299692 _Omar E. Pol_, Mar 06 2018