This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299702 #11 Oct 30 2024 08:05:37 %S A299702 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28, %T A299702 29,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55, %U A299702 56,57,58,59,61,62,64,65,66,67,68,69,71,73,74,75,76,77,78 %N A299702 Heinz numbers of knapsack partitions. %C A299702 An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A299702 Robert Israel, <a href="/A299702/b299702.txt">Table of n, a(n) for n = 1..10000</a> %p A299702 filter:= proc(n) local F,t,S,i,r; %p A299702 F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); %p A299702 S:= {0}: r:= 1; %p A299702 for t in F do %p A299702 S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); %p A299702 r:= r*(t[2]+1); %p A299702 if nops(S) <> r then return false fi %p A299702 od; %p A299702 true %p A299702 end proc: %p A299702 select(filter, [$1..100]); # _Robert Israel_, Oct 30 2024 %t A299702 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A299702 Select[Range[100],UnsameQ@@Plus@@@Union[Rest@Subsets[primeMS[#]]]&] %Y A299702 Cf. A056239, A108917, A112798, A275972, A276024, A284640, A296150, A299701, A299729. %K A299702 nonn %O A299702 1,2 %A A299702 _Gus Wiseman_, Feb 17 2018