This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299730 #31 Mar 08 2021 08:39:49 %S A299730 1,1,2,3,4,3,1,6,9,8,5,2,12,20,19,14,8,3,1,19,41,42,34,21,12,5,2,37, %T A299730 72,88,74,53,31,18,8,3,1,58,136,161,155,115,77,46,25,12,5,2,102,226, %U A299730 307,291,241,168,110,65,35,18,8,3,1 %N A299730 Irregular triangle read by rows: T(n,k) is the number of partitions of 3*n having exactly k prime parts; n >= 0, 0 <= k <= floor( 3*n / 2 ). %C A299730 Sequence of row lengths = A001651. %H A299730 J. Stauduhar, <a href="/A299730/b299730.txt">Table of n, a(n) for n = 0..719</a> %F A299730 T(n,k) = A222656(3n,k). %e A299730 The irregular triangle T(n, k) begins: %e A299730 3n\k 0 1 2 3 4 5 6 7 8 9 %e A299730 0: 1 %e A299730 3: 1 2 %e A299730 6: 3 4 3 1 %e A299730 9: 6 9 8 5 2 %e A299730 12: 12 20 19 14 8 3 1 %e A299730 15: 19 41 42 34 21 12 5 2 %e A299730 18: 37 72 88 74 53 31 18 8 3 1 %p A299730 b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, 1, %p A299730 add(b(n-i*j, i-1)*`if`(isprime(i), x^j, 1), j=0..n/i))) %p A299730 end: %p A299730 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(3*n$2)): %p A299730 seq(T(n), n=0..12); # _Alois P. Heinz_, Mar 03 2018 %t A299730 b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, 1, %t A299730 Sum[b[n - i*j, i - 1]*If[PrimeQ[i], x^j, 1], {j, 0, n/i}]]]; %t A299730 T[n_] := CoefficientList[b[3n, 3n], x]; %t A299730 T /@ Range[0, 12] // Flatten (* _Jean-François Alcover_, Mar 08 2021, after _Alois P. Heinz_ *) %Y A299730 Cf. A001651, A008585, A222656. %K A299730 nonn,tabf %O A299730 0,3 %A A299730 _J. Stauduhar_, Feb 17 2018