cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299733 Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x.

This page as a plain text file.
%I A299733 #27 Apr 06 2024 15:00:04
%S A299733 19,97,33751
%N A299733 Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x.
%C A299733 A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x,y) = n has an integer solution.
%C A299733 There are only three prime numbers below 600000 which satisfy the given conditions. No prime number below 600000 exists which has more than one representation if we require a representation by odd prime numbers y < x.
%H A299733 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017.
%e A299733 33751 = f(131,79) for f(x,y) = x^2 + x*y + y^2.
%e A299733 33751 = f( 13, 2) for f(x,y) = x^4+x^3*y+x^2*y^2+x*y^3+y^4.
%o A299733 (PARI)
%o A299733 A299733(upto) =
%o A299733 {
%o A299733     my(K, M, phi, multi);
%o A299733     forprime(n = 2, upto, multi = 0;
%o A299733         K = floor(5.383*log(n)^1.161);
%o A299733         M = floor(2*sqrt(n/3));
%o A299733         for(k = 3, K,
%o A299733             phi = eulerphi(k);
%o A299733             forprime(y = 2, M,
%o A299733                 forprime(x = y + 1, M,
%o A299733                     if(n == y^phi*polcyclo(k, x/y),
%o A299733                         multi += 1
%o A299733                     )
%o A299733                 )
%o A299733             )
%o A299733         );
%o A299733         if(multi > 1, print(n," has multiple reps!"))
%o A299733     )
%o A299733 }
%o A299733 A299733(100000)
%o A299733 (Julia) using Nemo
%o A299733 function isA299733(n)
%o A299733     if n < 3 || !isprime(ZZ(n)) return false end
%o A299733     R, x = PolynomialRing(ZZ, "x")
%o A299733     K = floor(Int, 5.383*log(n)^1.161) # Bounds from
%o A299733     M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt
%o A299733     N = QQ(n); multi = 0
%o A299733     for k in 3:K
%o A299733         e = Int(eulerphi(ZZ(k)))
%o A299733         c = cyclotomic(k, x)
%o A299733         for m in 2:M if isprime(ZZ(m))
%o A299733             for j in m:M if isprime(ZZ(j))
%o A299733                 if N == m^e*subst(c, QQ(j,m)) multi += 1
%o A299733     end end end end end end
%o A299733     multi > 1
%o A299733 end # _Peter Luschny_, May 16 2019
%Y A299733 Subsequence of A299929.
%Y A299733 Cf. A293654, A296095, A299214, A299498, A299928, A299930, A299956, A299964.
%K A299733 nonn,bref,more,hard
%O A299733 1,1
%A A299733 _Peter Luschny_, Feb 21 2018