This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299733 #27 Apr 06 2024 15:00:04 %S A299733 19,97,33751 %N A299733 Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x. %C A299733 A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x,y) = n has an integer solution. %C A299733 There are only three prime numbers below 600000 which satisfy the given conditions. No prime number below 600000 exists which has more than one representation if we require a representation by odd prime numbers y < x. %H A299733 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %e A299733 33751 = f(131,79) for f(x,y) = x^2 + x*y + y^2. %e A299733 33751 = f( 13, 2) for f(x,y) = x^4+x^3*y+x^2*y^2+x*y^3+y^4. %o A299733 (PARI) %o A299733 A299733(upto) = %o A299733 { %o A299733 my(K, M, phi, multi); %o A299733 forprime(n = 2, upto, multi = 0; %o A299733 K = floor(5.383*log(n)^1.161); %o A299733 M = floor(2*sqrt(n/3)); %o A299733 for(k = 3, K, %o A299733 phi = eulerphi(k); %o A299733 forprime(y = 2, M, %o A299733 forprime(x = y + 1, M, %o A299733 if(n == y^phi*polcyclo(k, x/y), %o A299733 multi += 1 %o A299733 ) %o A299733 ) %o A299733 ) %o A299733 ); %o A299733 if(multi > 1, print(n," has multiple reps!")) %o A299733 ) %o A299733 } %o A299733 A299733(100000) %o A299733 (Julia) using Nemo %o A299733 function isA299733(n) %o A299733 if n < 3 || !isprime(ZZ(n)) return false end %o A299733 R, x = PolynomialRing(ZZ, "x") %o A299733 K = floor(Int, 5.383*log(n)^1.161) # Bounds from %o A299733 M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt %o A299733 N = QQ(n); multi = 0 %o A299733 for k in 3:K %o A299733 e = Int(eulerphi(ZZ(k))) %o A299733 c = cyclotomic(k, x) %o A299733 for m in 2:M if isprime(ZZ(m)) %o A299733 for j in m:M if isprime(ZZ(j)) %o A299733 if N == m^e*subst(c, QQ(j,m)) multi += 1 %o A299733 end end end end end end %o A299733 multi > 1 %o A299733 end # _Peter Luschny_, May 16 2019 %Y A299733 Subsequence of A299929. %Y A299733 Cf. A293654, A296095, A299214, A299498, A299928, A299930, A299956, A299964. %K A299733 nonn,bref,more,hard %O A299733 1,1 %A A299733 _Peter Luschny_, Feb 21 2018