A299736 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
8, 128, 1578, 21111, 280642, 3742524, 49914496, 665759775, 8880043786, 118444355690, 1579842808694, 21072374550353, 281069094117722, 3748976470182616, 50004873889561202, 666978689750754527
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1. .0..0..1..1 ..0..0..0..1. .0..1..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..1 ..1..1..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..1..0..0 ..1..0..1..1. .1..0..0..0. .1..1..1..0. .1..1..0..0. .1..1..0..1 ..1..0..0..1. .1..0..0..0. .1..1..1..1. .1..0..1..1. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A299740.
Formula
Empirical: a(n) = 15*a(n-1) -16*a(n-2) -74*a(n-3) -143*a(n-4) +359*a(n-5) +1265*a(n-6) -1482*a(n-7) -3403*a(n-8) +1254*a(n-9) +9324*a(n-10) +1300*a(n-11) -12152*a(n-12) -9082*a(n-13) +5339*a(n-14) +10470*a(n-15) +1214*a(n-16) -3095*a(n-17) -2072*a(n-18) +764*a(n-19) -3*a(n-20) -161*a(n-21) -154*a(n-22) +112*a(n-23) +48*a(n-24)
Comments