cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A299735 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 220, 1578, 11303, 81105, 582032, 4177161, 29979239, 215160247, 1544201029, 11082704750, 79540390044, 570860083491, 4097053535956, 29404486634726, 211035522699946, 1514598516808216, 10870248941079889, 78015599995840787
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Column 3 of A299740.

Examples

			Some solutions for n=5
..0..1..1. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..1..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .0..0..0. .1..1..1
..1..1..1. .0..0..0. .0..0..0. .0..0..0. .1..1..1. .1..1..1. .1..1..1
..1..1..1. .1..1..1. .1..1..1. .0..0..0. .1..1..1. .1..1..1. .1..1..1
..1..1..1. .0..0..0. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .1..1..1
		

Crossrefs

Cf. A299740.

Formula

Empirical: a(n) = 8*a(n-1) -4*a(n-2) -13*a(n-3) -6*a(n-4) +5*a(n-5) +23*a(n-6) -20*a(n-7) -12*a(n-8)

A299736 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1578, 21111, 280642, 3742524, 49914496, 665759775, 8880043786, 118444355690, 1579842808694, 21072374550353, 281069094117722, 3748976470182616, 50004873889561202, 666978689750754527
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Column 4 of A299740.

Examples

			Some solutions for n=5
..0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1. .0..0..1..1
..0..0..0..1. .0..1..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..1
..1..1..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..1..0..0
..1..0..1..1. .1..0..0..0. .1..1..1..0. .1..1..0..0. .1..1..0..1
..1..0..0..1. .1..0..0..0. .1..1..1..1. .1..0..1..1. .1..0..1..1
		

Crossrefs

Cf. A299740.

Formula

Empirical: a(n) = 15*a(n-1) -16*a(n-2) -74*a(n-3) -143*a(n-4) +359*a(n-5) +1265*a(n-6) -1482*a(n-7) -3403*a(n-8) +1254*a(n-9) +9324*a(n-10) +1300*a(n-11) -12152*a(n-12) -9082*a(n-13) +5339*a(n-14) +10470*a(n-15) +1214*a(n-16) -3095*a(n-17) -2072*a(n-18) +764*a(n-19) -3*a(n-20) -161*a(n-21) -154*a(n-22) +112*a(n-23) +48*a(n-24)

A299737 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11303, 280642, 6896530, 170243005, 4203272237, 103785926879, 2562713574885, 63279709651014, 1562532732365521, 38582817153962988, 952705725385867657, 23524674373682096884, 580882734290938810868
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Column 5 of A299740.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..1..1..0..1. .0..1..1..0..1
..0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..0. .0..0..1..1..0
..1..1..1..1..1. .1..1..1..1..1. .1..1..1..0..0. .1..1..1..0..1
..1..0..0..0..0. .0..0..1..1..0. .1..0..0..0..1. .1..0..1..1..1
		

Crossrefs

Cf. A299740.

Formula

Empirical recurrence of order 79 (see link above)

A299738 Number of n X 6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 81105, 3742524, 170243005, 7790212998, 356575568843, 16322570202905, 747207636738251, 34205652494216087, 1565866504708915868, 71682283388175729699, 3281474035612238093148, 150219433611860316291070
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Column 6 of A299740.

Examples

			Some solutions for n=5
..0..0..0..1..0..1. .0..0..1..0..0..0. .0..0..1..1..1..1. .0..0..0..1..0..1
..0..0..0..1..1..0. .0..0..1..1..1..1. .0..0..1..0..0..0. .0..0..0..1..1..0
..0..0..0..1..1..0. .0..0..1..0..0..0. .0..0..1..0..0..0. .0..0..0..1..0..0
..0..0..0..1..0..1. .0..0..1..0..0..0. .0..0..1..0..0..0. .0..0..0..1..0..0
..0..0..0..1..0..1. .0..1..1..0..0..0. .0..1..0..1..1..1. .0..0..0..1..1..0
		

Crossrefs

Cf. A299740.

A299739 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 582032, 49914496, 4203272237, 356575568843, 30260326859957, 2568233775595684, 217979679558156226, 18501304542474481340, 1570323059564422761030, 133283374981849052162973
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Column 7 of A299740.

Examples

			Some solutions for n=5
..0..0..0..1..1..0..0. .0..0..0..1..0..1..0. .0..0..0..1..0..1..1
..0..1..1..0..1..0..0. .0..0..0..1..0..0..1. .0..1..1..0..0..1..0
..0..0..0..0..1..0..0. .0..0..0..1..1..0..1. .0..0..0..0..1..1..0
..0..0..1..0..0..0..1. .0..0..0..1..0..0..0. .0..0..1..0..1..1..1
..0..1..1..1..1..0..0. .0..0..0..1..0..1..1. .0..1..1..1..0..0..1
		

Crossrefs

Cf. A299740.

A299734 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 220, 21111, 6896530, 7790212998, 30260326859957, 404132235613627376, 18556239226034408691425
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2018

Keywords

Comments

Diagonal of A299740.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..1. .0..1..1..0..1. .0..0..0..0..0. .0..1..1..0..1
..1..0..1..1..1. .0..0..1..1..0. .0..0..0..0..0. .0..0..1..1..0
..0..0..1..1..1. .1..1..1..0..1. .1..1..1..1..1. .1..1..0..1..1
..0..1..0..0..0. .0..1..0..0..0. .1..0..1..0..0. .1..0..0..1..0
		

Crossrefs

Cf. A299740.
Showing 1-6 of 6 results.