cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299755 Triangle read by rows in which row n is the strict integer partition with FDH number n.

Original entry on oeis.org

1, 2, 3, 4, 2, 1, 5, 3, 1, 6, 4, 1, 7, 3, 2, 8, 5, 1, 4, 2, 9, 10, 6, 1, 11, 4, 3, 5, 2, 7, 1, 12, 3, 2, 1, 13, 8, 1, 6, 2, 5, 3, 14, 4, 2, 1, 15, 9, 1, 7, 2, 10, 1, 5, 4, 6, 3, 16, 11, 1, 8, 2, 4, 3, 1, 17, 5, 2, 1, 18, 7, 3, 6, 4, 12, 1, 19, 9, 2, 20, 13, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9) (10) (6,1) (11) (4,3) (5,2) (7,1) (12) (3,2,1) (13) (8,1) (6,2) (5,3) (14) (4,2,1) (15).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Join@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]