cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299757 Weight of the strict integer partition with FDH number n.

This page as a plain text file.
%I A299757 #5 Feb 23 2018 11:11:33
%S A299757 0,1,2,3,4,3,5,4,6,5,7,5,8,6,6,9,10,7,11,7,7,8,12,6,13,9,8,8,14,7,15,
%T A299757 10,9,11,9,9,16,12,10,8,17,8,18,10,10,13,19,11,20,14,12,11,21,9,11,9,
%U A299757 13,15,22,9,23,16,11,12,12,10,24,13,14,10,25,10,26,17
%N A299757 Weight of the strict integer partition with FDH number n.
%C A299757 Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.
%C A299757 In analogy with the Heinz number correspondence between integer partitions and positive integers (see A056239), FDH numbers give a correspondence between strict integer partitions and positive integers.
%e A299757 Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9).
%t A299757 FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
%t A299757 nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
%t A299757 FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
%t A299757 Table[Total[FDfactor[n]/.FDrules],{n,nn}]
%Y A299757 Cf. A004111, A050376, A056239, A061775, A064547, A106400, A213925,  A215366, A246867, A279065, A279614, A299090, A299755, A299756, A299758, A299759.
%K A299757 nonn
%O A299757 1,3
%A A299757 _Gus Wiseman_, Feb 18 2018