This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299759 #11 Feb 23 2018 11:11:44 %S A299759 1,2,3,4,6,5,8,7,10,12,9,14,15,24,11,18,20,21,30,13,22,27,28,40,42,16, %T A299759 26,33,35,36,54,56,60,17,32,39,44,45,66,70,72,84,120,19,34,48,52,55, %U A299759 63,78,88,90,105,108,168,23,38,51,64,65,77,96,104,110,126 %N A299759 Triangle read by rows in which row n lists in order all FDH numbers of strict integer partitions of n. %C A299759 Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n. %C A299759 This sequence is a permutation of the positive integers. %e A299759 Triangle of strict partitions begins: %e A299759 0 %e A299759 (1) %e A299759 (2) %e A299759 (3) (21) %e A299759 (4) (31) %e A299759 (5) (41) (32) %e A299759 (6) (51) (42) (321) %e A299759 (7) (61) (43) (52) (421) %e A299759 (8) (71) (62) (53) (431) (521) %e A299759 (9) (81) (72) (54) (63) (621) (531) (432). %t A299759 nn=25; %t A299759 FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{_?PrimeQ,_?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&]; %t A299759 Table[Sort[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}] %Y A299759 Cf. A050376, A056239, A064547, A106400, A122111, A213925, A215366, A246867, A279065, A279614, A299755, A299757, A299758. %Y A299759 Row lengths give A000009. %K A299759 nonn,tabf %O A299759 1,2 %A A299759 _Gus Wiseman_, Feb 18 2018