This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299765 #74 May 26 2025 09:53:39 %S A299765 1,2,3,2,1,4,5,3,2,6,3,2,1,7,4,3,8,9,5,4,4,3,2,10,4,3,2,1,11,6,5,12,5, %T A299765 4,3,13,7,6,14,5,4,3,2,15,8,7,6,5,4,5,4,3,2,1,16,17,9,8,18,7,6,5,6,5, %U A299765 4,3,19,10,9,20,6,5,4,3,2,21,11,10,8,7,6,6,5,4,3,2,1,22,7,6,5,4,23,12,11 %N A299765 Irregular triangle read by rows, T(n,k), n >= 1, k >= 1, in which row n lists the partitions of n into consecutive parts, with the partitions ordered by increasing number of parts. %C A299765 In the triangle the first partition with m parts appears as the last partition in row A000217(m), m >= 1. - _Omar E. Pol_, Mar 23 2022 %C A299765 For m >= 0, row 2^m consists of just one element (2^m). - _Paolo Xausa_, May 24 2025 %H A299765 Paolo Xausa, <a href="/A299765/b299765.txt">Table of n, a(n) for n = 1..10350</a> (rows 1..500 of triangle, flattened) %e A299765 Triangle begins: %e A299765 [1]; %e A299765 [2]; %e A299765 [3], [2, 1]; %e A299765 [4]; %e A299765 [5], [3, 2]; %e A299765 [6], [3, 2, 1]; %e A299765 [7], [4, 3]; %e A299765 [8]; %e A299765 [9], [5, 4], [4, 3, 2]; %e A299765 [10], [4, 3, 2, 1]; %e A299765 [11], [6, 5]; %e A299765 [12], [5, 4, 3]; %e A299765 [13], [7, 6]; %e A299765 [14], [5, 4, 3, 2]; %e A299765 [15], [8, 7], [6, 5, 4], [5, 4, 3, 2, 1]; %e A299765 [16]; %e A299765 [17], [9, 8]; %e A299765 [18], [7, 6, 5], [6, 5, 4, 3]; %e A299765 [19], [10, 9]; %e A299765 [20], [6, 5, 4, 3, 2]; %e A299765 [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1]; %e A299765 [22], [7, 6, 5, 4]; %e A299765 [23], [12, 11]; %e A299765 [24], [9, 8, 7]; %e A299765 [25], [13, 12], [7, 6, 5, 4, 3]; %e A299765 [26], [8, 7, 6, 5]; %e A299765 [27], [14, 13], [10, 9, 8], [7, 6, 5, 4, 3, 2]; %e A299765 [28], [7, 6, 5, 4, 3, 2, 1]; %e A299765 ... %e A299765 Note that in the below diagram the number of horizontal line segments in the n-th row equals A001227(n), the number of partitions of n into consecutive parts, so we can find the partitions of n into consecutive parts as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1], equaling the 15th row of the above triangle. %e A299765 . _ %e A299765 . _|1| %e A299765 . _|2 _| %e A299765 . _|3 |2| %e A299765 . _|4 _|1| %e A299765 . _|5 |3 _| %e A299765 . _|6 _|2|3| %e A299765 . _|7 |4 |2| %e A299765 . _|8 _|3 _|1| %e A299765 . _|9 |5 |4 _| %e A299765 . _|10 _|4 |3|4| %e A299765 . _|11 |6 _|2|3| %e A299765 . _|12 _|5 |5 |2| %e A299765 . _|13 |7 |4 _|1| %e A299765 . _|14 _|6 _|3|5 _| %e A299765 . _|15 |8 |6 |4|5| %e A299765 . _|16 _|7 |5 |3|4| %e A299765 . _|17 |9 _|4 _|2|3| %e A299765 . _|18 _|8 |7 |6 |2| %e A299765 . _|19 |10 |6 |5 _|1| %e A299765 . _|20 _|9 _|5 |4|6 _| %e A299765 . _|21 |11 |8 _|3|5|6| %e A299765 . _|22 _|10 |7 |7 |4|5| %e A299765 . _|23 |12 _|6 |6 |3|4| %e A299765 . _|24 _|11 |9 |5 _|2|3| %e A299765 . _|25 |13 |8 _|4|7 |2| %e A299765 . _|26 _|12 _|7 |8 |6 _|1| %e A299765 . _|27 |14 |10 |7 |5|7 _| %e A299765 . |28 |13 |9 |6 |4|6|7| %e A299765 ... %e A299765 The diagram is infinite. For more information about the diagram see A286000. %e A299765 For an amazing connection with sum of divisors function (A000203) see A237593. %t A299765 intervals[n_]:=Module[{x,y},SolveValues[(x^2-y^2+x+y)/2==n&&0<x<=n&&0<y<=n,{x,y},Integers]]; %t A299765 A299765row[n_]:=Flatten[SortBy[Map[Range[First[#],Last[#],-1]&,intervals[n]],Length]]; %t A299765 nrows=25;Array[A299765row,nrows] (* _Paolo Xausa_, Jun 19 2022 *) %o A299765 (PARI) iscons(p) = my(v = vector(#p-1, k, p[k+1] - p[k])); v == vector(#p-1, i, 1); %o A299765 row(n) = my(list = List()); forpart(p=n, if (iscons(p), listput(list, Vecrev(p)));); Vec(list); \\ _Michel Marcus_, May 11 2022 %Y A299765 Row n has length A204217(n). %Y A299765 Row sums give A245579. %Y A299765 Right border gives A118235. %Y A299765 Column 1 gives A000027. %Y A299765 Records give A000027. %Y A299765 The number of partitions into consecutive parts in row n is A001227(n). %Y A299765 For tables of partitions into consecutive parts see A286000 and A286001. %Y A299765 Cf. A328365 (mirror). %Y A299765 Cf. A352425 (a subsequence). %Y A299765 Cf. A000203, A000217, A026792, A235791, A237048, A237591, A237593, A245092, A285914, A286013, A288529, A288772, A288773, A288774. %K A299765 nonn,tabf,look %O A299765 1,2 %A A299765 _Omar E. Pol_, Feb 26 2018 %E A299765 Name clarified by _Omar E. Pol_, May 11 2022