This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299769 #36 Dec 10 2019 12:10:57 %S A299769 1,1,4,2,0,9,3,8,0,16,5,4,9,0,25,7,16,18,16,0,36,11,12,18,16,25,0,49, %T A299769 15,32,27,48,25,36,0,64,22,28,54,32,50,36,49,0,81,30,60,54,80,75,72, %U A299769 49,64,0,100,42,60,90,80,100,72,98,64,81,0,121,56,108,126,160,125,180,98,128,81,100,0,144 %N A299769 Triangle read by rows: T(n,k) is the sum of all squares of the parts k in the last section of the set of partitions of n, with n >= 1, 1 <= k <= n. %C A299769 The partial sums of the k-th column of this triangle give the k-th column of triangle A299768. %C A299769 Note that the last section of the set of partitions of n is also the n-th section of the set of partitions of any positive integer >= n. %H A299769 Alois P. Heinz, <a href="/A299769/b299769.txt">Rows n = 1..200, flattened</a> %F A299769 T(n,k) = A299768(n,k) - A299768(n-1,k). - _Alois P. Heinz_, Jul 23 2018 %e A299769 Triangle begins: %e A299769 1; %e A299769 1, 4; %e A299769 2, 0, 9; %e A299769 3, 8, 0, 16; %e A299769 5, 4, 9, 0, 25; %e A299769 7, 16, 18, 16, 0, 36; %e A299769 11, 12, 18, 16, 25, 0, 49; %e A299769 15, 32, 27, 48, 25, 36, 0, 64; %e A299769 22, 28, 54, 32, 50, 36, 49, 0, 81; %e A299769 30, 60, 54, 80, 75, 72, 49, 64, 0, 100; %e A299769 42, 60, 90, 80, 100, 72, 98, 64, 81, 0, 121; %e A299769 56, 108, 126, 160, 125, 180, 98, 128, 81, 100, 0, 144; %e A299769 ... %e A299769 Illustration for the 4th row of triangle: %e A299769 . %e A299769 . Last section of the set %e A299769 . Partitions of 4. of the partitions of 4. %e A299769 . _ _ _ _ _ %e A299769 . |_| | | | [1,1,1,1] | | [1] %e A299769 . |_ _| | | [2,1,1] | | [1] %e A299769 . |_ _ _| | [3,1] _ _ _| | [1] %e A299769 . |_ _| | [2,2] |_ _| | [2,2] %e A299769 . |_ _ _ _| [4] |_ _ _ _| [4] %e A299769 . %e A299769 For n = 4 the last section of the set of partitions of 4 is [4], [2, 2], [1], [1], [1], so the squares of the parts are respectively [16], [4, 4], [1], [1], [1]. The sum of the squares of the parts 1 is 1 + 1 + 1 = 3. The sum of the squares of the parts 2 is 4 + 4 = 8. The sum of the squares of the parts 3 is 0 because there are no parts 3. The sum of the squares of the parts 4 is 16. So the fourth row of triangle is [3, 8, 0, 16]. %p A299769 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1+n*x, b(n, i-1)+ %p A299769 (p-> p+(coeff(p, x, 0)*i^2)*x^i)(b(n-i, min(n-i, i)))) %p A299769 end: %p A299769 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)-b(n-1$2)): %p A299769 seq(T(n), n=1..14); # _Alois P. Heinz_, Jul 23 2018 %t A299769 b[n_, i_] := b[n, i] = If[n==0 || i==1, 1 + n*x, b[n, i-1] + Function[p, p + (Coefficient[p, x, 0]*i^2)*x^i][b[n-i, Min[n-i, i]]]]; %t A299769 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n] - b[n-1, n-1]]; %t A299769 T /@ Range[14] // Flatten (* _Jean-François Alcover_, Dec 10 2019, after _Alois P.heinz_ *) %Y A299769 Column 1 is A000041. %Y A299769 Leading diagonal gives A000290, n >= 1. %Y A299769 Second diagonal gives A000007. %Y A299769 Row sums give A206440. %Y A299769 Cf. A066183, A135010, A206438, A299768. %K A299769 nonn,tabl %O A299769 1,3 %A A299769 _Omar E. Pol_, Mar 20 2018