This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299775 #28 Aug 26 2018 12:32:17 %S A299775 1,2,2,3,5,6,7,6,11,14,15,22,25,29,30,25,42,55,56 %N A299775 Irregular triangle read by rows in which row n lists the indices of the partitions into consecutive parts in the list of colexicographically ordered partitions of n. %C A299775 If n > 1 and n is odd then row n ending in [p(n) - 1, p(n)], where p(n) is A000041(n). %e A299775 Triangle begins: %e A299775 1; %e A299775 2; %e A299775 2, 3; %e A299775 5; %e A299775 6, 7; %e A299775 6, 11; %e A299775 14, 15; %e A299775 22; %e A299775 25, 29, 30; %e A299775 25, 42; %e A299775 55, 56; %e A299775 ... %e A299775 For n = 9 the partitions of 9 into consecutive parts are [4, 3, 2], [5, 4] and [9]. Then we have that in the list of colexicographically ordered partitions of 9 these partitions are in the rows 25, 29 and 30 respectively as shown below, so the 9th row of the triangle is [25, 29, 30]. %e A299775 -------------------------------------------------------- %e A299775 p Diagram Partitions of 9 %e A299775 -------------------------------------------------------- %e A299775 1 2 3 4 5 6 7 8 9 %e A299775 _ _ _ _ _ _ _ _ _ %e A299775 1 |_| | | | | | | | | [1, 1, 1, 1, 1, 1, 1, 1, 1] %e A299775 2 |_ _| | | | | | | | [2, 1, 1, 1, 1, 1, 1, 1] %e A299775 3 |_ _ _| | | | | | | [3, 1, 1, 1, 1, 1, 1] %e A299775 4 |_ _| | | | | | | [2, 2, 1, 1, 1, 1, 1] %e A299775 5 |_ _ _ _| | | | | | [4, 1, 1, 1, 1, 1] %e A299775 6 |_ _ _| | | | | | [3, 2, 1, 1, 1, 1] %e A299775 7 |_ _ _ _ _| | | | | [5, 1, 1, 1, 1] %e A299775 8 |_ _| | | | | | [2, 2, 2, 1, 1, 1] %e A299775 9 |_ _ _ _| | | | | [4, 2, 1, 1, 1] %e A299775 10 |_ _ _| | | | | [3, 3, 1, 1, 1] %e A299775 11 |_ _ _ _ _ _| | | | [6, 1, 1, 1] %e A299775 12 |_ _ _| | | | | [3, 2, 2, 1, 1] %e A299775 13 |_ _ _ _ _| | | | [5, 2, 1, 1] %e A299775 14 |_ _ _ _| | | | [4, 3, 1, 1] %e A299775 15 |_ _ _ _ _ _ _| | | [7, 1, 1] %e A299775 16 |_ _| | | | | [2, 2, 2, 2, 1] %e A299775 17 |_ _ _ _| | | | [4, 2, 2, 1] %e A299775 18 |_ _ _| | | | [3, 3, 2, 1] %e A299775 19 |_ _ _ _ _ _| | | [6, 2, 1] %e A299775 20 |_ _ _ _ _| | | [5, 3, 1] %e A299775 21 |_ _ _ _| | | [4, 4, 1] %e A299775 22 |_ _ _ _ _ _ _ _| | [8, 1] %e A299775 23 |_ _ _| | | | [3, 2, 2, 2] %e A299775 24 |_ _ _ _ _| | | [5, 2, 2] %e A299775 25 |_ _ _ _| | | [4, 3, 2] <--- Consecutive parts %e A299775 26 |_ _ _ _ _ _ _| | [7, 2] %e A299775 27 |_ _ _| | | [3, 3, 3] %e A299775 28 |_ _ _ _ _ _| | [6, 3] %e A299775 29 |_ _ _ _ _| | [5, 4] <--- Consecutive parts %e A299775 30 |_ _ _ _ _ _ _ _ _| [9] <--- Consecutive parts %e A299775 . %Y A299775 Row n has length A001227(n). %Y A299775 Right border gives A000041, n >= 1. %Y A299775 Cf. A211992 (partitions in colexicographic order). %Y A299775 Cf. A299765 (partitions into consecutive parts). %Y A299775 For tables of partitions into consecutive parts see also A286000 and A286001. %Y A299775 Cf. A000041, A135010, A141285, A186114, A186412, A193870, A194446, A194447, A211978, A206437, A299474, A299475, A299773, A299774. %K A299775 nonn,more,tabf %O A299775 1,2 %A A299775 _Omar E. Pol_, Mar 29 2018