cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299778 Irregular triangle read by rows: T(n,k) is the part that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned part is already associated to a previous peak or if there is no part adjacent to the k-th peak, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 28, 0, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 8, 0, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 39, 0, 0, 0, 0, 10, 0, 0, 0, 10, 42, 0, 0, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 60, 0, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2018

Keywords

Comments

For the definition of "part" of the symmetric representation of sigma see A237270.
For more information about the mentioned Dyck paths see A237593.

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  12,  0,  0;
   4,  0,  4;
  15,  0,  0;
   5,  3,  5;
   9,  0,  9,  0;
   6,  0,  0,  6;
  28,  0,  0,  0;
   7,  0,  0,  7;
  12,  0, 12,  0;
   8,  8,  0,  0,  8;
  31,  0,  0,  0,  0;
   9,  0,  0,  0,  9;
  39,  0,  0,  0,  0;
  10,  0,  0,  0, 10;
  42,  0,  0,  0,  0;
  11,  5,  0,  5,  0, 11;
  18,  0,  0,  0, 18,  0;
  12,  0,  0,  0,  0, 12;
  60,  0,  0,  0,  0,  0;
  13,  0,  5,  0,  0, 13;
  21,  0,  0,  0  21,  0;
  14,  6,  0,  6,  0, 14;
  56,  0,  0,  0,  0,  0,  0;
  ...
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.              0 _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _ 0
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_ 0
.    0 _ _ _| |    0 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |    0 _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|  0 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |    0 _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|  0 _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|0    | |     | |
.   | |     |_|_ _     0  |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |  0 _|    _ _|0    | |
.   |_|_ _ _     0  |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _   0  |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|  0 _| |      0
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |    0 _|  _|
.          0  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|  0
.            0    |                             28|  _ _|  0
.                 |_ _ _ _ _ _ _ _                | |    0
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
For the construction of the spiral see A239660.
		

Crossrefs

Row sums give A000203.
Row n has length A003056(n).
Column k starts in row A000217(k).
Nonzero terms give A237270.
The number of nonzero terms in row n is A237271(n).
Column 1 is A241838.
The triangle with n rows contain A237590(n) nonzero terms.
Cf. A296508 (analog for subparts).