This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299779 #25 Dec 07 2019 12:06:08 %S A299779 1,2,1,5,1,1,9,3,1,1,17,5,2,1,1,28,9,4,2,1,1,47,14,7,3,2,1,1,73,24,10, %T A299779 6,3,2,1,1,114,35,17,9,5,3,2,1,1,170,55,25,14,8,5,3,2,1,1,253,80,38, %U A299779 20,13,7,5,3,2,1,1,365,118,55,31,18,12,7,5,3,2,1,1,525,167,80,44,27,17,11,7,5,3,2,1,1 %N A299779 Triangle read by rows: T(n,k) is the total number of cliques of size k in all partitions of all positive integers <= n. %C A299779 Column k gives the partial sums of the k-th column of triangle A197126. %H A299779 Alois P. Heinz, <a href="/A299779/b299779.txt">Rows n = 1..150, flattened</a> %F A299779 T(n,k) = Sum_{j=k..n} A197126(j,k). %F A299779 T(2n+1,n+1) = A000041(n). - _Alois P. Heinz_, Apr 27 2018 %F A299779 Sum_{k=1..n} k * T(n,k) = A284870(n). - _Alois P. Heinz_, May 14 2018 %e A299779 Triangle begins: %e A299779 1; %e A299779 2, 1; %e A299779 5, 1, 1; %e A299779 9, 3, 1, 1; %e A299779 17, 5, 2, 1, 1; %e A299779 28, 9, 4, 2, 1, 1; %e A299779 47, 14, 7, 3, 2, 1, 1; %e A299779 73, 24, 10, 6, 3, 2, 1, 1; %e A299779 114, 35, 17, 9, 5, 3, 2, 1, 1; %e A299779 170, 55, 25, 14, 8, 5, 3, 2, 1, 1; %e A299779 253, 80, 38, 20, 13, 7, 5, 3, 2, 1, 1; %e A299779 365, 118, 55, 31, 18, 12, 7, 5, 3, 2, 1, 1; %e A299779 525, 167, 80, 44, 27, 17, 11, 7, 5, 3, 2, 1, 1; %e A299779 ... %p A299779 b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0], %p A299779 add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p))) %p A299779 end: %p A299779 T:= proc(n, k) option remember; %p A299779 b(n$2, k)[2]+`if`(n<k, 0, T(n-1, k)) %p A299779 end: %p A299779 seq(seq(T(n, k), k=1..n), n=1..20); # _Alois P. Heinz_, Apr 27 2018 %t A299779 b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m==k, l+{0, l[[1]]}, l]][b[n-p*m, p-1, k]], {m, 0, n/p}]]]; %t A299779 T[n_, k_] := b[n, n, k][[2]] + If[n < k, 0, T[n-1, k]]; %t A299779 Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Dec 07 2019, after _Alois P. Heinz_ *) %Y A299779 Column 1 gives A000097. %Y A299779 Row sums give A014153. %Y A299779 Cf. A000041, A000070, A197126, A284870. %K A299779 nonn,tabl %O A299779 1,2 %A A299779 _Omar E. Pol_, Apr 04 2018