cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299780 Triangle read by rows: T(n,m) = number of n-uniform tilings having m different arrangements of polygons about their vertices, n >= 1 and 1 <= m <= n.

This page as a plain text file.
%I A299780 #27 Jul 05 2019 18:48:13
%S A299780 11,0,20,0,22,39,0,33,85,33,0,74,149,94,15,0,100,284,187,92,10,0
%N A299780 Triangle read by rows: T(n,m) = number of n-uniform tilings having m different arrangements of polygons about their vertices, n >= 1 and 1 <= m <= n.
%C A299780 Taken from _Brian Galebach_'s square array (see link).
%H A299780 Brian L. Galebach, <a href="http://ProbabilitySports.com/tilings.html">n-Uniform Tilings</a>
%H A299780 José Ezequiel Soto Sánchez, Asla Medeiros e Sá, Luiz Henrique de Figueiredo, <a href="https://doi.org/10.1007/s00371-019-01665-y">Acquiring periodic tilings of regular polygons from images</a>, The Visual Computer (2019) Vol. 35, Issue 6-8, 899-907.
%e A299780 Triangle begins:
%e A299780   11;
%e A299780    0,  20;
%e A299780    0,  22,  39;
%e A299780    0,  33,  85,  33;
%e A299780    0,  74, 149,  94, 15;
%e A299780    0, 100, 284, 187, 92, 10;
%e A299780 ...
%e A299780 Other known positive terms are T(7,7) = 7, T(8,7) = 20, T(9,8) = 8, T(10,8) = 27 and T(11,9) = 1.
%Y A299780 Row sums gives A068599.
%Y A299780 Leading diagonal is A068600.
%Y A299780 Column 1 gives 11 together with A000004.
%Y A299780 Cf. A299781, A299782.
%K A299780 nonn,tabl,hard,more
%O A299780 1,1
%A A299780 _Omar E. Pol_, Mar 30 2018