cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299795 Numbers of the form p*2^(p-1) where p is prime.

This page as a plain text file.
%I A299795 #13 Sep 08 2022 08:46:20
%S A299795 4,12,80,448,11264,53248,1114112,4980736,96468992,7784628224,
%T A299795 33285996544,2542620639232,45079976738816,189115999977472,
%U A299795 3307330976350208,238690780250636288,17005592192950992896,70328211781017665536,4943727411754159833088,83822005070936202543104
%N A299795 Numbers of the form p*2^(p-1) where p is prime.
%H A299795 G. C. Greubel, <a href="/A299795/b299795.txt">Table of n, a(n) for n = 1..460</a>
%F A299795 From _Michel Marcus_, Mar 07 2018: (Start)
%F A299795 a(n) = prime(n)*2^(prime(n)-1).
%F A299795 a(n) = A000040(n)*A061286(n).
%F A299795 a(n) = A001787(A000040(n)).
%F A299795 (End)
%p A299795 Primes := select(isprime, [$1..71]):
%p A299795 seq(p*2^(p-1), p in Primes);
%t A299795 Table[Prime[n]*2^(Prime[n] -1), {n,1,30}] (* _G. C. Greubel_, Mar 07 2018 *)
%o A299795 (PARI) a(n) = my(p = prime(n)); p*2^(p-1); \\ _Michel Marcus_, Mar 07 2018
%o A299795 (Magma) [NthPrime(n)*2^(NthPrime(n) -1): n in [1..30]]; // _G. C. Greubel_, Mar 07 2018
%Y A299795 A subsequence of A001787 and A300332.
%K A299795 nonn
%O A299795 1,1
%A A299795 _Peter Luschny_, Mar 03 2018