cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299807 Rectangular array read by antidiagonals: T(n,k) is the number of distinct sums of k complex n-th roots of 1, n >= 1, k >= 0.

This page as a plain text file.
%I A299807 #34 Aug 15 2022 15:31:06
%S A299807 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,9,10,5,1,1,6,15,16,15,6,1,1,7,19,
%T A299807 35,25,21,7,1,1,8,28,37,70,36,28,8,1,1,9,33,84,61,126,49,36,9,1,1,10,
%U A299807 45,96,210,91,210,64,45,10,1,1,11,51,163,225,462,127,330,81,55,11,1,1,12,66,180,477,456,924,169,495,100,66
%N A299807 Rectangular array read by antidiagonals: T(n,k) is the number of distinct sums of k complex n-th roots of 1, n >= 1, k >= 0.
%H A299807 Max Alekseyev, <a href="/A299807/b299807.txt">Table of n, a(n) for n = 1..351</a>
%F A299807 From _Chai Wah Wu_, May 28 2018: (Start)
%F A299807 The following are all conjectures.
%F A299807 For m >= 0, the 2^(m+1)-th row are the figurate numbers based on the 2^m-dimensional regular convex polytope with g.f.: (1+x)^(2^m-1)/(1-x)^(2^m+1).
%F A299807 For p prime, the n=p row corresponds to binomial(k+p-1,p-1) for k = 0,1,2,3,..., which is the maximum possible (i.e., the number of combinations with repetitions of k choices from p categories) with g.f.: 1/(1-x)^p.
%F A299807 (End)
%e A299807 Array starts:
%e A299807   n=1:  1,  1,  1,   1,   1,    1,    1,    1,     1,     1,     1, ...
%e A299807   n=2:  1,  2,  3,   4,   5,    6,    7,    8,     9,    10,    11, ...
%e A299807   n=3:  1,  3,  6,  10,  15,   21,   28,   36,    45,    55,    66, ...
%e A299807   n=4:  1,  4,  9,  16,  25,   36,   49,   64,    81,   100,   121, ...
%e A299807   n=5:  1,  5, 15,  35,  70,  126,  210,  330,   495,   715,  1001, ...
%e A299807   n=6:  1,  6, 19,  37,  61,   91,  127,  169,   217,   271,   331, ...
%e A299807   n=7:  1,  7, 28,  84, 210,  462,  924, 1716,  3003,  5005,  8008, ...
%e A299807   n=8:  1,  8, 33,  96, 225,  456,  833, 1408,  2241,  3400,  4961, ...
%e A299807   n=9:  1,  9, 45, 163, 477, 1197, 2674, 5454, 10341, 18469, 31383, ...
%e A299807   n=10: 1, 10, 51, 180, 501, 1131, 2221, 3951,  6531, 10201, 15231, ...
%e A299807   ...
%Y A299807 Rows: A000012 (n=1), A000027 (n=2), A000217 (n=3), A000290 (n=4), A000332 (n=5), A354343 (n=6), A000579 (n=7), A014820 (n=8).
%Y A299807 Columns: A000012 (k=0), A000027 (k=1), A031940 (k=2).
%Y A299807 Diagonal: A299754 (n=k).
%Y A299807 Cf. A103314, A107754, A107861, A108380, A107848, A107753, A108381, A143008.
%K A299807 nonn,tabl
%O A299807 1,5
%A A299807 _Max Alekseyev_, Feb 24 2018
%E A299807 Row 6 corrected by _Max Alekseyev_, Aug 14 2022