This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299829 #16 Mar 06 2018 10:50:48 %S A299829 1,-155,28655,-5760440,1202381535,-256382973906,55428428962345, %T A299829 -12099932165757725,2660417880657190215,-588191792902675685120, %U A299829 130616050711284314803809,-29108986917589590736384395,6506478780288042396481955095 %N A299829 Coefficients in expansion of (q*j(q))^(-5/24) where j(q) is the elliptic modular invariant (A000521). %F A299829 Convolution inverse of A289300. %F A299829 a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(3/8), where c = 0.730428963078390701326735403005831754545040392327211512089... = 2^(5/8) * exp(5 * Pi / (8 * sqrt(3))) * Pi^(5/2) / (3^(5/8) * Gamma(1/3)^(15/4) * Gamma(5/8)). - _Vaclav Kotesovec_, Feb 20 2018, updated Mar 06 2018 %F A299829 a(n) * A289300(n) ~ -5*sqrt(2 + sqrt(2)) * exp(2*sqrt(3)*Pi*n) / (16*Pi*n^2). - _Vaclav Kotesovec_, Feb 20 2018 %t A299829 CoefficientList[Series[(2 * QPochhammer[-1, x])^5 / (65536 + x*QPochhammer[-1, x]^24)^(15/24), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 20 2018 *) %Y A299829 Cf. A000521, A289300. %K A299829 sign %O A299829 0,2 %A A299829 _Seiichi Manyama_, Feb 20 2018