This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299830 #15 Mar 06 2018 10:48:45 %S A299830 1,-186,37269,-7859330,1697901090,-371924784000,82208011242071, %T A299830 -18286478726628018,4086893434159800000,-916721490080116189690, %U A299830 206224024157150867919738,-46501365201275569893140034,10506135153567544547655979849 %N A299830 Coefficients in expansion of (q*j(q))^(-1/4) where j(q) is the elliptic modular invariant (A000521). %F A299830 Convolution inverse of A289301. %F A299830 a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(1/4), where c = 0.863092410616421890391706584312871736447175709008670875907... = 2^(1/4) * exp(sqrt(3) * Pi/4) * Pi^2 * Gamma(1/4) / (3^(3/4) * Gamma(1/3)^(9/2)). - _Vaclav Kotesovec_, Feb 20 2018, updated Mar 06 2018 %F A299830 a(n) * A289301(n) ~ -3*exp(2*sqrt(3)*Pi*n) / (2^(5/2)*Pi*n^2). - _Vaclav Kotesovec_, Feb 20 2018 %t A299830 CoefficientList[Series[(2 * QPochhammer[-1, x])^6 / (65536 + x*QPochhammer[-1, x]^24)^(3/4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 20 2018 *) %Y A299830 Cf. A000521, A289301. %K A299830 sign %O A299830 0,2 %A A299830 _Seiichi Manyama_, Feb 20 2018