cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299831 Coefficients in expansion of (q*j(q))^(-1/3) where j(q) is the elliptic modular invariant (A000521).

This page as a plain text file.
%I A299831 #16 Mar 06 2018 10:47:00
%S A299831 1,-248,57380,-13242240,3055845770,-705181025216,162730809182936,
%T A299831 -37552508189222400,8665789092645124915,-1999757252424845206240,
%U A299831 461473159094045987499908,-106491663578673234478298880,24574504905153510156698896190
%N A299831 Coefficients in expansion of (q*j(q))^(-1/3) where j(q) is the elliptic modular invariant (A000521).
%H A299831 Seiichi Manyama, <a href="/A299831/b299831.txt">Table of n, a(n) for n = 0..422</a>
%F A299831 Convolution inverse of A007245.
%F A299831 a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n), where c = 1.077593073040317872038995220477192961256589630965039133409... = 2 * exp(Pi/sqrt(3)) * Pi^4 / (3 * Gamma(1/3)^6). - _Vaclav Kotesovec_, Feb 20 2018, updated Mar 06 2018
%t A299831 CoefficientList[Series[(2 * QPochhammer[-1, x])^8 / (65536 + x*QPochhammer[-1, x]^24), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 20 2018 *)
%Y A299831 Cf. A000521, A007245.
%K A299831 sign
%O A299831 0,2
%A A299831 _Seiichi Manyama_, Feb 20 2018