This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299832 #15 Mar 06 2018 10:45:11 %S A299832 1,-372,109134,-29582728,7708451301,-1961287513020,491099261627462, %T A299832 -121565597132437848,29833005033279338994,-7271987659286598049924, %U A299832 1763026435863342757734816,-425536800137353949416343064,102330765938465480149314691831 %N A299832 Coefficients in expansion of (q*j(q))^(-1/2) where j(q) is the elliptic modular invariant (A000521). %F A299832 Convolution inverse of A161361. %F A299832 a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) * sqrt(n), where c = 1.26222636056850175307711547840462898041775779303411175244... = 2^(5/2) * exp(sqrt(3) * Pi/2) * Pi^(11/2) / (3^(3/2) * Gamma(1/3)^9). - _Vaclav Kotesovec_, Feb 20 2018, updated Mar 06 2018 %F A299832 a(n) * A161361(n) ~ 3*exp(2*sqrt(3)*Pi*n) / (2*Pi*n^2). - _Vaclav Kotesovec_, Feb 20 2018 %t A299832 CoefficientList[Series[(2 * QPochhammer[-1, x])^12 / (65536 + x*QPochhammer[-1, x]^24)^(3/2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 20 2018 *) %Y A299832 Cf. A000521, A161361. %K A299832 sign %O A299832 0,2 %A A299832 _Seiichi Manyama_, Feb 20 2018