This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299861 #20 Mar 04 2018 12:45:00 %S A299861 1,-432,41472,-19704384,593104896,-1488746462112,-215673487239168, %T A299861 -180545262418802304,-58940991594820435968,-31030127172303490499184, %U A299861 -13143520096697989968012288,-6336110261914309914844683456 %N A299861 Coefficients in expansion of (E_6^2/E_4^3)^(1/4). %H A299861 Seiichi Manyama, <a href="/A299861/b299861.txt">Table of n, a(n) for n = 0..367</a> %F A299861 G.f.: (1 - 1728/j)^(1/4), where j is the j-function. %F A299861 a(n) ~ -3^(1/4) * Gamma(1/4)^2 * exp(2*Pi*n) / (8 * Pi^2 * n^(3/2)). - _Vaclav Kotesovec_, Mar 04 2018 %F A299861 a(n) * A300053(n) ~ -exp(4*Pi*n) / (2*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018 %t A299861 terms = 12; %t A299861 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A299861 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A299861 (E6[x]^2/E4[x]^3)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 28 2018 *) %Y A299861 (E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), A289368 (k=12), A299856 (k=16), A299857 (k=18), A299858 (k=24), A299863 (k=32), A299859 (k=36), A299860 (k=48), this sequence (k=72), A299414 (k=96), A299413 (k=144), A289210 (k=288). %Y A299861 Cf. A000521 (j), A289334, A299830. %K A299861 sign %O A299861 0,2 %A A299861 _Seiichi Manyama_, Feb 21 2018