A299905 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices of decomposition order 2.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 50, 108, 50, 0, 0, 0, 0, 180, 660, 660, 180, 0, 0, 0, 0, 602, 3420, 5714, 3420, 602, 0, 0, 0, 0, 1932, 16212, 40860, 40860, 16212, 1932, 0, 0, 0, 0, 6050, 72828, 262010, 391500, 262010, 72828, 6050, 0, 0
Offset: 0
Examples
Array begins: 0,0,0,0,0,0,..., 0,0,0,0,0,0,..., 0,0,2,12,50,180,..., 0,0,12,108,660,3420,..., 0,0,50,660,5714,40860,..., 0,0,180,3420,40860,39150,..., ...
Links
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017. Also Discrete Math., 341 (2018), 341-349.
Programs
-
Mathematica
T[n_, k_] := Sum[(1/2)*(j - 1 )*j!^2*StirlingS2[k + 1, j + 1]*StirlingS2[n + 1, j + 1], {j, 2, Min[k, n]}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)
Extensions
More terms from Jean-François Alcover, Feb 24 2018