cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299911 Coordination sequence of point of type 3.3.3.4.4 in 3-uniform tiling #3.54 in the Galebach listing.

This page as a plain text file.
%I A299911 #23 Jul 10 2025 16:03:34
%S A299911 1,5,11,16,22,29,35,38,43,51,56,60,67,75,78,81,89,96,100,105,113,118,
%T A299911 121,127,134,140,145,151,156,161,167,172,178,185,191,194,199,207,212,
%U A299911 216,223,231,234,237,245,252,256,261,269,274,277,283,290,296,301,307
%N A299911 Coordination sequence of point of type 3.3.3.4.4 in 3-uniform tiling #3.54 in the Galebach listing.
%H A299911 Rémy Sigrist, <a href="/A299911/b299911.txt">Table of n, a(n) for n = 0..2500</a>
%H A299911 Brian Galebach, <a href="http://probabilitysports.com/tilings.html?u=0&amp;n=3&amp;t=54">Tiling 3.54</a>
%H A299911 Brian Galebach, <a href="/A299909/a299909.png">Tiling 3.54</a> [Annotated figure showing the 3 kinds of points mentioned in A299909, A299910, A299911]
%H A299911 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a>
%H A299911 Printable Paper Web Site, <a href="https://www.printablepaper.net/preview/3-3-3-3-3-3_3-3-4-3-4_Tessellation_Paper-Small">Printable 3.3.3.3.3.3,3.3.4.3.4 Tessellation Small</a> [Shows this tiling]
%H A299911 Rémy Sigrist, <a href="/A299911/a299911.gp.txt">PARI program for A299911</a>
%F A299911 Conjectures from _Chai Wah Wu_, Jul 10 2025: (Start)
%F A299911 a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-7) - a(n-8) + a(n-9) - a(n-10) for n > 10.
%F A299911 G.f.: (x^2 + x + 1)*(x^8 + 3*x^7 + 3*x^6 + 3*x^5 + 6*x^4 + 3*x^3 + 3*x^2 + 3*x + 1)/(x^10 - x^9 + x^8 - x^7 - x^3 + x^2 - x + 1). (End)
%o A299911 (PARI) \\ See Links section.
%Y A299911 See A299909, A299910 for the other two kinds of points.
%K A299911 nonn
%O A299911 0,2
%A A299911 _N. J. A. Sloane_, Mar 07 2018
%E A299911 More terms from _Rémy Sigrist_, May 10 2021