A299919 Motzkin numbers (A001006) mod 4.
1, 1, 2, 0, 1, 1, 3, 3, 3, 3, 0, 2, 3, 3, 2, 0, 3, 3, 2, 0, 3, 3, 3, 3, 1, 1, 0, 2, 1, 1, 3, 3, 3, 3, 2, 0, 3, 3, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 1, 1, 3, 3, 0, 2, 3, 3, 2, 0, 3, 3, 2, 0, 3, 3, 1, 1, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 2, 0, 1
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= rectoproc({(3+3*n)*a(n)+(5+2*n)*a(1+n)+(-4-n)*a(n+2), a(0) = 1, a(1) = 1},a(n),remember): seq(f(n) mod 4, n=0..200); # Robert Israel, Mar 16 2018
-
Mathematica
b = DifferenceRoot[Function[{b, n}, {3(n+1) b[n] + (2n+5) b[n+1] == (n+4) b[n+2], b[0] == 1, b[1] == 1}]]; a[n_] := Mod[b[n], 4]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 26 2019 *)