This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299925 #6 Feb 23 2018 11:12:06 %S A299925 1,1,2,2,4,6,8,4,12,16,16,16,32,40,44,8,64,44,128,52,136,96,256,40,88, %T A299925 224,88,152,512,204,1024,16,384,512,360,136,2048,1152,1024,152,4096, %U A299925 744,8192,416,496,2560,16384,96,720,496,2624,1088,32768,360,1216,504 %N A299925 Number of chains in Young's lattice from () to the partition with Heinz number n. %C A299925 a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A299925 The a(9) = 12 tableaux: %e A299925 1 3 1 2 %e A299925 2 4 3 4 %e A299925 . %e A299925 1 3 1 2 1 2 1 2 1 1 %e A299925 2 3 3 3 2 3 1 3 2 3 %e A299925 . %e A299925 1 2 1 2 1 1 1 1 %e A299925 2 2 1 2 2 2 1 2 %e A299925 . %e A299925 1 1 %e A299925 1 1 %e A299925 The a(9) = 12 chains of Heinz numbers: %e A299925 1<9, %e A299925 1<2<9, 1<3<9, 1<4<9, 1<6<9, %e A299925 1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9, %e A299925 1<2<3<6<9, 1<2<4<6<9. %t A299925 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A299925 hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]]; %t A299925 chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]]; %t A299925 Table[Length[chns[1,n]],{n,30}] %Y A299925 Cf. A000085, A001222, A056239, A063834, A112798, A122111, A138178, A153452, A238690, A296150, A296188, A296561, A297388, A299202. %K A299925 nonn %O A299925 1,3 %A A299925 _Gus Wiseman_, Feb 21 2018