cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.

This page as a plain text file.
%I A299925 #6 Feb 23 2018 11:12:06
%S A299925 1,1,2,2,4,6,8,4,12,16,16,16,32,40,44,8,64,44,128,52,136,96,256,40,88,
%T A299925 224,88,152,512,204,1024,16,384,512,360,136,2048,1152,1024,152,4096,
%U A299925 744,8192,416,496,2560,16384,96,720,496,2624,1088,32768,360,1216,504
%N A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.
%C A299925 a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A299925 The a(9) = 12 tableaux:
%e A299925 1 3   1 2
%e A299925 2 4   3 4
%e A299925 .
%e A299925 1 3   1 2   1 2   1 2   1 1
%e A299925 2 3   3 3   2 3   1 3   2 3
%e A299925 .
%e A299925 1 2   1 2   1 1   1 1
%e A299925 2 2   1 2   2 2   1 2
%e A299925 .
%e A299925 1 1
%e A299925 1 1
%e A299925 The a(9) = 12 chains of Heinz numbers:
%e A299925 1<9,
%e A299925 1<2<9, 1<3<9, 1<4<9, 1<6<9,
%e A299925 1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9,
%e A299925 1<2<3<6<9, 1<2<4<6<9.
%t A299925 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A299925 hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]];
%t A299925 chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]];
%t A299925 Table[Length[chns[1,n]],{n,30}]
%Y A299925 Cf. A000085, A001222, A056239, A063834, A112798, A122111, A138178, A153452, A238690, A296150, A296188, A296561, A297388, A299202.
%K A299925 nonn
%O A299925 1,3
%A A299925 _Gus Wiseman_, Feb 21 2018