This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299949 #17 Mar 04 2018 08:12:37 %S A299949 1,54,7938,3958956,1442594502,658201268952,291148964582796, %T A299949 136084851675471024,64069809910723011222,30769281599576554087722, %U A299949 14917804015099613922436392,7307669924831130556163175612,3606311646826590340455185471940 %N A299949 Coefficients in expansion of (E_4^3/E_6^2)^(1/32). %H A299949 Seiichi Manyama, <a href="/A299949/b299949.txt">Table of n, a(n) for n = 0..367</a> %F A299949 Convolution inverse of A299862. %F A299949 a(n) ~ c * exp(2*Pi*n) / n^(15/16), where c = 2^(1/4) * Pi^(3/16) / (3^(1/32) * Gamma(1/4)^(1/4) * Gamma(1/16)) = 0.06666699751397812787469360011212565... - _Vaclav Kotesovec_, Mar 04 2018 %F A299949 a(n) * A299862(n) ~ -sin(Pi/16) * exp(4*Pi*n) / (16*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018 %t A299949 terms = 13; %t A299949 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A299949 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A299949 (E4[x]^3/E6[x]^2)^(1/32) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 28 2018 *) %Y A299949 (E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), this sequence (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288). %Y A299949 Cf. A004009 (E_4), A013973 (E_6), A299862. %K A299949 nonn %O A299949 0,2 %A A299949 _Seiichi Manyama_, Feb 22 2018