This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299958 #32 Jun 21 2025 11:49:34 %S A299958 1,-5,-25,-125,0,13125,243750,2921875,22343750,0,-3658984375, %T A299958 -77669921875,-1031953125000,-8564355468750,0,1584797607421875, %U A299958 35256063232421875,487629016113281250,4190289337158203125,0,-821167214355468750000,-18710068030548095703125,-264378336959838867187500 %N A299958 Expansion of root of z^5 + 25*x*z - 1. %H A299958 Robert Israel, <a href="/A299958/b299958.txt">Table of n, a(n) for n = 0..850</a> %H A299958 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lagrange_inversion_theorem">Lagrange inversion theorem</a>. %H A299958 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuinticEquation.html">Quintic Equation</a>. %F A299958 25000*(2*n+7)*(4*n-1)*(4*n+9)*(n+1)*a(n) + (n+5)*(n+4)*(n+3)*(n+2)*a(n+5) = 0. %F A299958 a(5*k) = Pochhammer(-1/10, 2*k)*Pochhammer(2/5, 2*k)*(-50000)^k/(Pochhammer(4/5, k)*Pochhammer(3/5, k)*Pochhammer(2/5, k)*k!). %F A299958 a(5*k+1) = -5*Pochhammer(4/5, 2*k)*Pochhammer(3/10, 2*k)*(-50000)^k/(Pochhammer(6/5, k)*Pochhammer(4/5, k)*Pochhammer(3/5, k)*k!). %F A299958 a(5*k+2) = -25*Pochhammer(6/5, 2*k)*Pochhammer(7/10, 2*k)*(-50000)^k/(Pochhammer(7/5, k)*Pochhammer(6/5, k)*Pochhammer(4/5, k)*k!). %F A299958 a(5*k+3) = -125*Pochhammer(8/5, 2*k)*Pochhammer(11/10, 2*k)*(-50000)^k/(Pochhammer(8/5, k)*Pochhammer(7/5, k)*Pochhammer(6/5, k)*k!). %F A299958 a(5*k+4) = 0. %F A299958 From _Seiichi Manyama_, Jun 21 2025: (Start) %F A299958 a(n) = (-25)^n * binomial(n/5+1/5,n)/(n+1). %F A299958 G.f. A(x) satisfies A(x) = 1/A(-x/A(x)^3). %F A299958 G.f.: (1/x) * Series_Reversion(x/(1-25*x)^(1/5)). (End) %p A299958 f:= gfun:-rectoproc({(25000*(2*n+7))*(4*n-1)*(4*n+9)*(n+1)*a(n)+(n+5)*(n+4)*(n+3)*(n+2)*a(n+5),a(0)=1,a(1)=-5,a(2)=-25,a(3)=-125,a(4)=0},a(n),remember): %p A299958 map(f, [$0..40]); %t A299958 CoefficientList[Root[#^5 + 25*x*# - 1&, 1] + O[x]^40, x] (* _Jean-François Alcover_, Aug 27 2022 *) %o A299958 (PARI) a(n) = (-25)^n*binomial(n/5+1/5, n)/(n+1); \\ _Seiichi Manyama_, Jun 21 2025 %o A299958 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-25*x)^(1/5))/x) \\ _Seiichi Manyama_, Jun 21 2025 %K A299958 sign %O A299958 0,2 %A A299958 _Robert Israel_, Feb 22 2018