cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299962 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the k-th positive number whose Collatz sequence contains n.

This page as a plain text file.
%I A299962 #12 Feb 26 2018 19:21:59
%S A299962 1,2,2,3,3,3,3,6,4,4,3,4,12,5,5,6,5,5,24,6,6,7,12,6,6,48,7,7,3,9,24,7,
%T A299962 7,96,8,8,9,5,14,48,9,8,192,9,9,3,18,6,18,96,10,9,384,10,10,7,6,36,7,
%U A299962 28,192,11,10,768,11,11,12,9,7,72,8,36,384,12,11
%N A299962 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the k-th positive number whose Collatz sequence contains n.
%C A299962 The n-th row corresponds to indices of rows in A070165 containing n.
%H A299962 Rémy Sigrist, <a href="/A299962/a299962.gp.txt">PARI program for A299962</a>
%H A299962 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F A299962 T(n, 1) = A070167(n) for any n > 0.
%F A299962 T(3*n, k) = 3*n * 2^(k-1) for any n > 0 and k > 0.
%F A299962 If the Collatz conjecture is true, then:
%F A299962 - T(1, k) = k for any k > 0,
%F A299962 - T(2, k) = k+1 for any k > 0.
%e A299962 Array T(n, k) begins:
%e A299962   n\k|  1     2     3     4     5     6     7     8     9    10
%e A299962   ---+---------------------------------------------------------
%e A299962     1|  1     2     3     4     5     6     7     8     9    10  -->  A000027 ?
%e A299962     2|  2     3     4     5     6     7     8     9    10    11
%e A299962     3|  3     6    12    24    48    96   192   384   768  1536  -->  A007283
%e A299962     4|  3     4     5     6     7     8     9    10    11    12
%e A299962     5|  3     5     6     7     9    10    11    12    13    14
%e A299962     6|  6    12    24    48    96   192   384   768  1536  3072  -->  A091629
%e A299962     7|  7     9    14    18    28    36    37    43    49    56
%e A299962     8|  3     5     6     7     8     9    10    11    12    13
%e A299962     9|  9    18    36    72   144   288   576  1152  2304  4608
%e A299962    10|  3     6     7     9    10    11    12    13    14    15
%o A299962 (PARI) See Links section.
%Y A299962 Cf. A000027, A007283, A091629, A070165, A070167.
%K A299962 nonn,tabl
%O A299962 1,2
%A A299962 _Rémy Sigrist_, Feb 22 2018